
D.W.G. van Kraalingen, C. Rappoldt

Plant Research International, Wageningen.

March 2000. Report 5. Updated for TTUTIL 4.13 (as PDF version only, April 2002)

Reference manual of the
FORTRAN utility library
TTUTIL v. 4

Table of Contents
page

1. Introduction 1
2. General description 3

2.1. Product perspective 3
2.2. Product identification 3
2.3. Supported platforms 3
2.4. Availability 4
2.5. Hard and software limitations 4

3. The structure of the TTUTIL library 5
4. General concept of RD routines 7

4.1. A simple example 7
4.2. Reading tables and arrays with fixed lengths 9
4.3. Using missing values 10
4.4. Getting information about a variable 10
4.5. Range checks on input 11
4.6. Making reruns with the RD routines 11
4.7. Note when using reruns and the RDINIT routine 13
4.8. Summary of available interface calls 13

4.8.1. Routines for opening and closing files 13
4.8.2. Basic RD routines for reading data 13
4.8.3. Routines that perform range checks 13

5. Reference manual of data file syntax 15
5.1. Variable name syntax 15
5.2. Definitions of data types 15

5.2.1. REAL and DOUBLE PRECISION data type 15
5.2.2. INTEGER data type 16
5.2.3. LOGICAL data type 16
5.2.4. CHARACTER data type 17
5.2.5. Date/time data type 17
5.2.6. 'Missing' data type 18

5.3. Defining arrays 18
5.4. Comment lines 19
5.5. Separation of specifications 19

6. The ENT routines 21
7. The OUT routines 23
8. Messages and Error handling 27

8.1. A logfile with version and author in a single call 27
8.2. RD* routines and logfile use 28

9. Known problems 29
9.1. Illegal nesting of input sections 29
9.2. Closing RD* input files 29
9.3. Compiler specific problems 29

9.3.1. Digital Visual Fortran and Compaq Visual Fortran 29
9.3.2. All Macintosh MPW Fortran compilers 30
9.3.3. Macintosh Absoft Fortran 90 compiler 30

10. Reference manual of interface calls 31
10.1. Reading of TTUTIL format datafiles 31

Routine: RDINIT 31

Routine: RDPARS 32
Routine: RDDTMP 32
Routine: RDSETS 33
Routine: RDFROM 33
Routine: RDINQR 34
Routine: RDINQR2 34
Routine: RDINLV 34
Routine: RDINNE 35
Routine: RDINDT 35
Routine: RDINAR 36
Routine: RDSCHA 36
Routine: RDSDOU 37
Routine: RDSINT 37
Routine: RDSLOG 37
Routine: RDSREA 38
Routine: RDSTIM 38
Routine: RDACHA 38
Routine: RDADOU 39
Routine: RDAINT 39
Routine: RDALOG 40
Routine: RDAREA 40
Routine: RDATIM 40
Routine: RDFCHA 41
Routine: RDFDOU 41
Routine: RDFINT 42
Routine: RDFLOG 42
Routine: RDFREA 43
Routine: RDFTIM 43
Routine: RDADOR 44
Routine: RDAINR 44
Routine: RDARER 45
Routine: RDFDOR 45
Routine: RDFINR 46
Routine: RDFRER 46
Routine: RDSDOR 47
Routine: RDSINR 47
Routine: RDSRER 48
Routine: RDMDEF 48
Routine: RDMCHA 48
Routine: RDMDOU 49
Routine: RDMINT 49
Routine: RDMLOG 49
Routine: RDMREA 50
Routine: RDMTIM 50

10.2. Writing of TTUTIL format datafiles 51
Routine: WRINIT 51
Routine: WRACHA 51
Routine: WRADOU 52
Routine: WRAINT 52

Routine: WRALOG 52
Routine: WRAREA 53
Routine: WRATIM 53
Routine: WRSCHA 54
Routine: WRSDOU 54
Routine: WRSINT 54
Routine: WRSLOG 55
Routine: WRSREA 55
Routine: WRSTIM 55

10.3. Interactive input 56
Routine: ENTCHA 56
Routine: ENTDCH 56
Routine: ENTINT 57
Routine: ENTDIN 57
Routine: ENTREA 57
Routine: ENTDRE 58
Routine: ENTDOU 58
Routine: ENTDDO 59
Routine: ENTYNO 59
Routine: ENTDYN 59
Routine: ENTTIM 60
Routine: ENTDTI 60

10.4. Output to file 61
Routine: COPFL2 61
Routine: OUTAR2 61
Routine: OUTCOM 62
Routine: OUTDAT 63
Routine: OUTPLT 64
Routine: OUTSEL 65

10.5. File and unit handling 65
Routine: DELFIL 65
Routine: EXTENS 66
Routine: FLEXIST 66
Routine: FLNAME 67
Routine: FOPENG 67
Routine: FOPENS 68
Routine: GETUN 69
Routine: GETUN2 69
Routine: USEDUN 70

10.6. Character string handling 70
Routine: ADDINF 70
Routine: ADDINT 71
Routine: ADDREA 71
Routine: ADDREF 72
Routine: ADDSTF 72
Routine: ADDSTR 73
Routine: ILEN 73
Routine: ISTART 74
Routine: LOWERC 74

Routine: UPPERC 74
Routine: REMOVE 75
Routine: STR_COPY 75
Routine: WORDS 75
Routine: RCHRSRC 76

10.7. Decoding of character strings to values 76
Routine: DECCHK 76
Routine: DECDOU 77
Routine: DECINT 77
Routine: DECREA 78
Routine: DECREC 78

10.8. Messages and Errors 79
Routine: FATALERR 79
Routine: MESSINI 79
Routine: MESSINQ 80
Routine: MESSWRT 80
Routine: WARNING 80
Routine: OPENLOGF 81

10.9. Version routines 81
Routine: TTUVER 81
Routine: VER4_13 82

10.10. Numeric functions 82
Routine: FCNSW 82
Routine: INSW 83
Routine: INTGRL 83
Routine: LIMIT 83
Routine: LINT 84
Routine: LINT2 84
Routine: MOVAVR 85
Routine: NOTNUL 85
Routine: REAAND 86
Routine: REANOR 86

10.11. Date/time 87
Routine: DTARDP 87
Routine: DTDPAR 87
Routine: DTDPST 88
Routine: DTFSECMP 88
Routine: DTFSEDP 89
Routine: DTLEAP 89
Routine: DTNOW 90

10.12. ‘Raw’ file I/O 90
Routine: GETREC 90
Routine: RECREAD 91
Routine: RECREAD_INIT 91
Routine: RECREAD_TERM 92

10.13. List search and sorting 92
Routine: IFINDC 92
Routine: IFINDI 93
Routine: SFINDG 93

Routine: SORTCH 94
Routine: SORTIN 94

10.14. Random number generation 95
Routine: IUNIFL 95
Routine: UNIFL 95

10.15. Miscellaneous 96
Routine: AMBUSY 96
Routine: CHKTSK 96
Routine: TIMER2 97

10.16. Internal routines 97
11. Reserved symbol names 99

11.1. General 99
11.2. Reserved common block names 99
11.3. Names of internal TTUTIL routines 99
11.4. Names of BLOCK DATA sections 100

12. Capacity settings of TTUTIL read routines 101
13. Removed routines 102
14. References 105

1

1. Introduction

Over the past years we developed solutions for ever recurring problems with respect to file
input, file output, character strings and file handling in Fortran simulation models. Each time
we paid a little more attention than strictly necessary for the problem at hand. This has
resulted in a slowly growing set of subroutines and functions that proved to be useful in almost
any Fortran program. Most of these routines have gone through a number of revisions and a lot
of new routines have been added. The set of routines became the utility library TTUTIL. The
solutions that are offered by TTUTIL have saved many researchers enormous amounts of time
and the library is now used in more than a few hundred places all around the world.

Through our experience on different hardware and software platforms, we are able to garantee
a very high degree of portability to other machines. TTUTIL has been used sucessfully on
VAX/VMS, OpenVMS for AXP, Prospero Fortran 77 for Atari 1024 ST, Microsoft Fortran 5.1
(MS-DOS), Microsoft Professional Powerstation (MS-DOS, Windows), GNU Fortran for Unix, Sun
Fortran, LS Fortran for Macintosh v.2, Digital Visual Fortran v.5 for Windows 95 and Windows
NT, Compaq Visual Fortran v.6.1 for Windows 95 and Windows NT and Absoft Fortran-90 for
the Macintosh.

This is the last version of TTUTIL which fully complies with the FORTRAN-77 standard. Future
versions may contain elements of the Fortran 90 language. We do not foresee a complete
redesign of TTUTIL in Fortran 90 or 95 style. We will maintain, however, the functionality
described in this report with current and new Fortran compilers.

This report serves as a reference manual in using the library. We hope that others will find the
library a useful tool in improving their programs.

This report replaces CABO/TT report no. 20 (Rappoldt & van Kraalingen, 1990).

Authors of this report:

D.W.G. van Kraalingen C. Rappoldt
Alterra Alterra
P.O. Box 47 P.O. Box 47
6700 AA Wageningen 6700 AA Wageningen
The Netherlands The Netherlands
e-mail: d.w.g.vankraalingen@alterra.wag-
ur.nl

e-mail: c.rappoldt@alterra.wag-ur.nl

mailto:d.w.g.vankraalingen@alterra.wag-
mailto:c.rappoldt@alterra.wag-ur.nl

3

2. General description

2.1. Product perspective

The TTUTIL library is a collection of FORTRAN-77 utility routines for string handling, file i/o
and screen i/o. Many routines are utilities in the sense that they do not make use of any
mathematical or numerical method, do not contain measured data and do not depend on
assumptions concerning some described system. Utilities simply perform their task with respect
to input, output, string handling, file handling etc. They are tools for writing reliable and
readable FORTRAN programs.

2.2. Product identification

Product: TTUTIL (floppy disk + manual)
Version: Version 4.13
Purpose: FORTRAN-77 utility library
Author(s) Daniël van Kraalingen, C. Rappoldt

2.3. Supported platforms

The TTUTIL library is available for the following platforms (note however, that the source
code is capable of running on a wider range of platforms):

Windows NT/95/98 on Intel processors:
• Digital Visual Fortran v.5.0a-d
• Compaq Visual Fortran v.6.1, v.6.5

Macintosh:
Absoft Pro Fortran 6.0 (www.absoft.com) consisting of:
• Fortran 77 compiler for PowerMac version 4.5 (1998)
• Fortran 90 compiler for PowerMac version 2.0 (1998)
The linker can link Fortran 90 programs with Fortran 77 libraries, so there is no immediate
need for using a Fortran 90 compiled TTUTIL library (see however the use of the function
LINT in "knowns bugs").

Language Systems Fortran 77 consisting of:
• compiler for 68k Macs version 3.3 (1993)
• compiler for PowerMac version 1.2 (1996)
The products of Language systems have been taken over by Fortner Research
(www.fortner.com). They have given up on this compiler, however, and Language Systems
Fortran is no longer available.

4

Both the Language Systems and Absoft compilers work from Apple’s MPW shell. They allow
the Fortran programs to be linked as either MPW tools or as standalone applications. Absoft
claims its compilers are link compatible with MetroWorks CodeWarrior in PPC mode.

2.4. Availability

The TTUTIL library is available by submitting an e-mail request to one of the authors. Usually
a nominal fee may be charged for delivery.

2.5. Hard and software limitations

The TTUTIL system is written in FORTRAN-77 with a few commonly accepted extensions to
the standard. It is therefore easiest to use the TTUTIL library from a Fortran program, however,
experienced programmers should have no difficulty calling TTUTIL routines from other
programming languages.

5

3. The structure of the TTUTIL library

Table 3.1 gives a classification of the TTUTIL routines. Closely related routines have names
often beginning with the same acronym. For instance, the "DEC" routines DECCHK, DECINT,
DECREA and DECREC are used for decoding character strings into real or integer values.

Table 3.1 can be used for an efficient search through the library if you are looking for a
routine that solves a specific programming problem. The routine descriptions, given in
Section 10, provide further information on the individual subroutines and functions. In
general, there will be no need for any further documentation. A few groups, however, require a
more detailed introduction. These are the RD routines for reading data files with a convenient
format (Section 4 and 5), the ENT routines for interactive variable entry (Section 6), the OUT
routines for easy output programming (Section 7) and the routines for message and error
handling (Section 8).

Table 3.1 Available TTUTIL routines

Category Available routines

Reading of TTUTIL format datafiles: rdinit, rdpars, rddtmp

rdsets, rdfrom

rdinqr, rdinqr2, rdinlv, rdinne, rdindt, rdinar

rdscha, rdsdou, rdsint, rdslog, rdsrea, rdstim

rdacha, rdadou, rdaint, rdalog, rdarea, rdatim

rdfcha, rdfdou, rdfint, rdflog, rdfrea, rdftim

rdador, rdainr, rdarer

rdfdor, rdfinr, rdfrer

rdsdor, rdsinr, rdsrer

rdmdef, rdmcha, rdmdou, rdmint, rdmlog, rdmrea, rdmtim

Writing of TTUTIL format datafiles: wrinit

wracha, wraint, wralog, wrarea, wratim, wradou

wrscha, wrsint, wrslog, wrsrea, wrstim, wrsdou

Interactive input: entcha, entdch, entint, entdin, entrea, entdre, entdou,

entddo, entyno, entdyn, enttim, entdti

Output to file: copfl2

outar2

outcom

outdat, outplt

outsel

File and unit handling: delfil, extens, flexist, flname

fopeng, fopens

getun, getun2, usedun

Character string handling: addinf, addint, addrea, addref, addstf, addstr

ilen, istart

lowerc, upperc

remove

str_copy

words

6

rchrsrc

Decoding of character strings to

values:

decchk, decdou, decint, decrea, decrec

Messages and Errors fatalerr, warning, messini, messinq, messwrt, openlogf

Version routines ttuver, ver4.13

Numeric functions: fcnsw, insw, intgrl, limit, lint, lint2, movavr, notnul, reaand,

reanor

Date/time: dtardp, dtdpar, dtdpst, dtfsecmp, dtfsedp, dtleap

‘Raw’ file I/O : getrec,

recread, recread_init, recread_term

List search and sorting: ifindc, ifindi, sfindg

sortch, sortin

Random number generation: iunifl, unifl

Miscellaneous: ambusy, chktsk, timer2

Internal routines: dtsys, rddata, rddecd, rddeci, rddecl, rddect, rderr, rdindx,

rdlex, rdsctb, rdtmp1, rdtmp2, swpi4

See Section 13 for a description of the routines that have been removed in this version.

7

4. General concept of RD routines

4.1. A simple example

The ordinary method for reading data from a file consists of a number of READ statements,
each reading data from a record of the file. That method clearly requires that the sequence of
READ statements is consistent with the contents of the file. Moreover, array lengths have to be
known in the program or have to be read as separate data items. The ordinary reading
method, moreover, requires accurate positioning of the data items otherwise multiplication or
division by 10 can sometimes occur. In general, much time is invested in debugging such
"simple" input sections.

The solution suggested sometimes in textbooks on FORTRAN is to read data from file as
character strings and to perform the decoding in the program. This method, however, requires
a considerable programming effort and a need was felt for generally applicable input routines
that allow a great deal of flexibility and provide robustness. The RD routines are designed to
do just this. They enable the construction of clear, short and robust input sections consisting of
CALL's only and the construction of robust, powerfull, self-explanatory datafiles.

The general idea is that the input file contains both the variable name and the associated
value(s). The values are extracted from the data files using a set of subroutines whose names
all begin with RD (e.g. RDSREA means 'read a single real value'). With these routines the user
can request the value from the datafile by supplying the name of the requested variable (of
course after having defined which data file to use). As an example the statement:

CALL RDSREA ('WLVI', WLVI)

requests the subroutine RDSREA to extract the value of WLVI from the data file and assign it to
the variable WLVI. It does so by searching for the line: WLVI = <value> in the data file (in fact,
the procedure is slightly different but that does not affect the understanding of the concept of
the RD routines: the values are actually read from a temporary file which is created after
syntax check and analysis of the data file). An example datafile is given in Listing 4.1. Note
that the comment lines are actually part of the data file

Listing 4.1 Example datafile demonstrating various syntax forms

* example data file

N = 10 ! single value

BB = 0, 2, 4, 6 ! array of four elements

CCC = 10., 20., ! array continued on next line

 30., 40.

DD = 100*10. ! array of 100 elements

EE = 10.; FF = 20.; G = 30. ! more than one variable on a single line

Listing 4.2 reads the values of CCC, BB, EE, FF and N respectively from the above listed data
file INPUT.DAT. Also note that it is not necessary to read the values in the same sequence as

8

they occur on the file, just as it is not necessary to read every variable in the file. In the
declarations section the parameters ILBMAX and ILCMAX specify the declared lengths of the
arrays BB and CC. A further explanation is given below the listing.

Listing 4.2 Example illustrating the use of some RD routines.

* declarations

 INTEGER N,ILBMAX,ILB,ILCMAX,ILC

 PARAMETER (ILBMAX=100,ILCMAX=100)

 REAL EE,FF

 REAL BB(ILBMAX),CCC(ILCMAX)

* example of input section

 CALL RDINIT (30,40,'INPUT.DAT') <- Initialization of reading

 CALL RDSREA ('EE' ,EE) <- read single value

 CALL RDSREA ('FF' ,FF) <- read single value

 CALL RDAREA ('CCC',CCC,ILCMAX,ILC) <- read array

 CALL RDAREA ('BB' ,BB ,ILBMAX,ILB) <- read array

 CALL RDSINT ('N' ,N) <- read single value

 CLOSE (30) <- close reading

The statement:

CALL RDINIT (30, 40, 'INPUT.DAT')

calls the RDINIT routine that 1) opens the file INPUT.DAT using unit=31, 2) analyses the data
file, 3) creates a temporary file from the data file using unit=30, 4) closes the data file (leaving
30 used for the temporary file !!), and 5) sends all error messages that have occurred to a log
file (with unit=40). After this RDINIT call, the numerical values (including arrays) can be
acquired through several RD routines from the library TTUTIL. Note that input sections starting
with RDINIT cannot be nested (see Section 9.1).

The values of two real variables EE and FF are read by means of two calls to RDSREA. The first
argument of this subroutine is the name of the variable, written as a character constant. Using
that name, the routine RDSREA identifies the value to be assigned to the variable. So the
character string in the CALL should correspond to the variable name in the data file.

Routine RDAREA reads arrays of real values. In the above example it is called two times for
reading the arrays CCC and BB from file. Note that the declared length (=maximum length) is
an input argument of RDAREA and the actual array length is an output argument. Clearly, the
number of values in the file should not exceed the declared length. This is checked by the RD
system and leads to a fatal error message. Finally, the value of the single integer variable N is
read using RDSINT. The CLOSE statement disables reading from the datafile.

In the example of Listing 4.1 and Listing 4.2 only INTEGER and REAL datatypes are used. The
TTUTIL datafile syntax, however, allows several more datatypes (nl. DOUBLE PRECISION,
CHARACTER, LOGICAL, 'Date/time', and 'Missing' datatypes). In Listing 4.3 examples are given
of these datatypes.

9

Listing 4.3 Examples of other supported datatypes

D7 = .35D+3 ! DOUBLE PRECISION

L1 = .TRUE. ! LOGICAL

S3 = 'ABC'//'DEF'//'GHI'//'JKL' ! CONCATENATED STRINGS

DT14 = 26-DEC-1905_12:34:23.070 ! Absolute Date/time

AI = 1234, -, 1444 ! INTEGER array with one element missing

4.2. Reading tables and arrays with fixed lengths

Another very powerfull feature of TTUTIL is that data can be organised in tables, showing the
conceptual relationship among several variables. In Listing 4.4 a 'normal' datafile is shown:

Listing 4.4 Standard way of defining array values

THICKNESS = 10. , 30. , 50. , 70.

FIELD_CAP = 0.31, 0.33, 0.34, 0.38

But it can more elegantly and more clearly, be written as in Listing 4.5:

Listing 4.5 Tabular way of defining array values

THICKNESS FIELD_CAP

 10. 0.31

 30. 0.33

 50. 0.34

 70. 0.38

The RD calls to read this from first or the second datafile are identical as shown in Listing 4.6:

Listing 4.6 Program to read both formats of the datafile

 INTEGER MAX_NL, NL ! Maximum number of layers

 PARAMETER (MAX_NL=10)

 REAL THICKNESS(MAX_NL), FIELD_CAP(MAX_NL)

 ...

* read arrays

 CALL RDAREA ('THICKNESS', THICKNESS, MAX_NL, NL) ! determine # of layers

 CALL RDAREA ('FIELD_CAP', FIELD_CAP, MAX_NL, NL) ! check # of layers

This program reads exactly the same from the first or the second datafile. As was discussed
earlier, the RDAREA call reads a REAL array and returns the number of data found in the
datafile. Often when working with compartments or layers, several parameters have to be
specified for each compartment or layer. For instance in the example above, each soil layer
needs to have a thickness and a water content at field capacity. The 'tabular' way of
organising this does provide protection against incomplete specifications (e.g. six thicknesses
but five water contents). There is, however, a set of special CALL's that, instead of returning the
number of values, checks for a given number of values. This is the category of RDF routines.

10

The program in Listing 4.7 checks the number of elements of FIELD_CAP against the number
found in THICKNESS. The number of data elements is returned in the first RDAREA call through
NL, in the next call, to RDFREA, NL is the required number of data elements to be found.

Listing 4.7 Program that checks for same number of elements among soil arrays

 INTEGER MAX_NL, NL ! Maximum number of layers

 PARAMETER (MAX_NL=10)

 REAL THICKNESS(MAX_NL), FIELD_CAP(MAX_NL)

 ...

* read arrays

 CALL RDAREA ('THICKNESS', THICKNESS, MAX_NL, NL)

 CALL RDFREA ('FIELD_CAP', FIELD_CAP, MAX_NL, NL)

4.3. Using missing values

As shown in Listing 4.3 missing values can be defined by a '-' in the datafile. Dependent on
the datatype of the elements around the missing value (in case of an array), or the datatype of
the call with which the missing value is read, a missing value code is returned. (See the
reference section on the details of these values). The user, however, can override the default
return value of missing elements by using a special call such as RDMREA (-300.). For each
datatype, RDM routines are available to modify the missing value behaviour. The defaults for
missing values are restored for all datatypes at once by a call to RDMDEF.

4.4. Getting information about a variable

In some cases you want information about a variable other than its value(s). For instance you
might want to know whether it is present in the datafile, its number of values, its datatype, or
whether it is an array or a scalar variable. Several routines are available to do just that, see the
reference part of this manual.

Probably the most common kind of information that is necessary in a program is to know
whether a variable exists at all in a datafile. Sometimes it is not absolutely required for a
specific variable to be available in a datafile, especially in cases where a default behaviour is
wanted. For instance if output options are defined in a datafile, we want the program to read
them and behave accordingly. If output options are not defined, default output options can be
choosen. A special RD call exists to find out if a variable exists in the datafile nl. RDINQR. This
is demonstrated in Listing 4.8.

Listing 4.8 Program that finds out the presence of a variable and takes action accordingly

 LOGICAL RDINQR

 CHARACTER*80 WEATHER_DIRECTORY

 ...

 IF (RDINQR ('WEATHER_DIRECTORY')) THEN

* weather directory defined in data file

 CALL RDSCHA ('WEATHER_DIRECTORY',WEATHER_DIRECTORY)

11

 ELSE

* weather directory not defined in data file, use default path

 WEATHER_DIRECTORY = 'C:\SYS\WEATHER\'

 END IF

4.5. Range checks on input

Often the value of one or more elements in the datafile is restricted to a certain range (e.g.
relative humidities between 0 and 100%). The RD routines can check for this with several
datatypes nl. REAL, DOUBLE PRECISION and INTEGER (Date/Time not yet implemented). The
RDSRER routine for instance reads a single REAL and checks the value on the datafile against
a lower and upper limit. If the value is not within this range, an error will occur. In Listing 4.9
an example program is shown.

Listing 4.9 Program that checks the input of a REAL variable.

 REAL X

 ...

 CALL RDSRER ('X', 0., 100., X)

4.6. Making reruns with the RD routines

The use of the RD routines for input has the additional advantage of a built in "rerun facility".
Calculations often need to be carried out for different values of input variables. Suppose that
something is calculated using the input variables BB, EE and FF from the program described
in Listing 4.2 Suppose the calculations have to be repeated for different combinations of BB
and EE. Then a so called rerun file can be created by the user, containing the desired
combinations of BB and EE. For example:

<start of rerun file RERUNS.DAT>
* example rerun file

BB = 1, 3, 5, 7 ; EE = 10. ! set 1

BB = 2, 4 ; EE = 10. ! set 2 (with a short array)

BB = 0, 2, 4, 6 ; EE = 30. ! set 3

BB = 1, 3, 5, 7, ! set 4 (with a long array)

 8, 9, 8, 9 ; EE = 30.

BB = 2, 4, 5, 7 ; EE = 30. ! set 5

<end of file>

A rerun file thus consists of sets of variables. The order of the variables should be identical in
all sets. The other syntax rules are identical to those of an ordinary data file. Actual array
lengths may differ between sets (see the example above). A great advantage of the rerun
facility is that most of the program code remains unchanged when a model is modified to be
able to do reruns ! Listing 4.10 shows how this works.

12

Listing 4.10 Program that demonstrates how to program a rerun loop

* open logfile and read rerun file

 CALL FOPENS (40,'RERUNS.LOG','NEW','DEL')

 CALL RDSETS (20,40,'RERUNS.DAT',INSETS)

* runs

 DO ISET = 0,INSETS

* select rerun set

 CALL RDFROM (ISET,.TRUE.)

* an ordinary input section:

 CALL RDINIT (30,40,'INPUT.DAT')

 CALL RDAREA ('BB' ,BB ,ILBMAX,ILB)

 CALL RDSREA ('EE' ,EE)

 CALL RDSREA ('FF' ,FF)

 CLOSE (30)

* calculations

 END DO

 CLOSE (20)

With a call to FOPENS a log file is opened, which is used for writing a report on rerun file
usage. In the call to RDSETS the rerun file is analysed and a short report is written to the log
file (unit 40). When the rerun file is not present or empty the output variable INSETS is set to
zero. Otherwise the number of rerun sets is returned in INSETS (in the above example there
are 5 rerun sets). By means of the call to RDFROM in the DO–loop, a certain set is selected.
Selection of set zero means that the contents of the original data file will be used. The input
section for reading the values of BB, EE and FF is just a usual input section for reading
variables from a data file. The RD routines, however, internally check whether reruns are being
made and whether a non–zero set was selected. In that case, for variables occurring in the
rerun file, the data file contents are replaced by the contents of the rerun file. Since this is a
rather hidden activity, each replacement is reported to the log file.

The file "RERUNS.DAT" may be absent or present. If the file is absent, the above program
section will carry out only one run using the contents of the data file.

The rerun facility has a global character, i.e. variables stored in different data files may occur
in a single rerun file. Within the above DO–loop, for instance, the variables BB and EE could
be read from different input files by writing two separate input sections (each containing a call
to RDINIT). As a consequence, the use of identical variable names in different input files leads
to problems when reruns are made for that variable. Then the value of both variables will be
replaced by the contents of the rerun file. Both replacements will be reported to the produced
log file. Before a rerun is started, a check is done to see if all the variables of the preceding
set were used. If this is not the case, it is assumed that there is a typing error in the data files
and the simulation is halted.

13

4.7. Note when using reruns and the RDINIT routine

In Listing 10 a rerun loop is made around some straightforward calculations. With each new
rerun loop, however, a call to RDINIT is made which would imply parsing and checking a
datafile that is, under most circumstances already parsed and checked. To avoid this
inefficient behaviour, RDINIT will recover the processed contents of a previous datafile from a
.TMP file. The second RDINIT call with the same datafile is therefore considerably faster than
the first call.

In some cases, however, it is mandatory that the datafile is parsed and checked again, e.g. in
cases where a program generates datafiles for input to itself. In that case, instead of RDINIT,
RDPARS calls should be used that do not recover any previous information from .TMP files.

4.8. Summary of available interface calls

4.8.1. Routines for opening and closing files

RDINIT prepares new data file for reading, tries to recover previous ones
RDPARS prepares new data file for reading, never recovers previous ones
RDSETS prepares new rerun data file for reading, never recovers previous ones
RDFROM selects a specific rerun set from a rerun file
RDDTMP deletes .TMP files known to the RD system

4.8.2. Basic RD routines for reading data

Data type Single Unknown

length

Prescribed

length

Set value for

missing data

REAL RDSREA RDAREA RDFREA RDMREA

DOUBLE PRECISION RDSDOU RDADOU RDFDOU RDMDOU

INTEGER RDSINT RDAINT RDFINT RDMINT

CHARACTER RDSCHA RDACHA RDFCHA RDMCHA

LOGICAL RDSLOG RDALOG RDFLOG RDMLOG

DATE/TIME RDSTIM RDATIM RDFTIM RDMTIM

4.8.3. Routines that perform range checks

Data type Single Unknown

length

Prescribed

length

REAL RDSRER RDARER RDFRER

DOUBLE PRECISION RDSDOR RDADOR RDFDOR

INTEGER RDSINR RDAINR RDFINR

CHARACTER not useful not useful not useful

LOGICAL not useful not useful not useful

DATE/TIME to be to be to be

15

5. Reference manual of data file syntax

5.1. Variable name syntax

Variable names in TTUTIL format data files can be up to 31 characters long. They are case-
insensitive and should begin with a letter (a-z). Letters (a-z), digits (0-9) and the underscore (_)
character can be used after the first letter. Variable names can occur more than once in rerun
files, in standard datafiles, however, they can occur only once.

Examples:
X = 5.

X_1 = 5.

X234567890123456789012345678901 = 5.

X23456789012345678901234567890_ = 5.

X2345678901234567_901234567890_ = 5.

abcdefg = 5.

Invalid examples:
3X = 5.

X&X@X = 5.

5.2. Definitions of data types

5.2.1. REAL and DOUBLE PRECISION data type

The specification of a REAL or DOUBLE PRECISION data type is very similar to how it would be
done in a Fortran program. Both contain one decimal point (.) and may have a positive or
negative exponent (denoted with an E or e for REAL's or D or d for DOUBLE PRECISION
datatype). The plus sign (+) is optional and indicates a positive number. The minus sign (-) is
required to indicate a negative number.

Although both floating point types have a different range and accuracy in Fortran programs
we handle them identically 'inside' the read routines of the TTUTIL library as a DOUBLE
PRECISION data type. In other words, a floating point number without an exponent or with an
E exponent is stored internally as a DOUBLE PRECISION number. When the user request for
the value through a REAL RD call, a conversion to REAL is done. They are stored in 8 bytes on
the .TMP file.

So,
X1 = 5.

X2 = 5.E3

X3 = 5.D3

mailto:X&X@X

16

are all stored in the same way in the .TMP file. They can be requested through RDSREA and
RDSDOU calls.

The valid range for the REAL and DOUBLE PRECISION data type is:

-1.E+38 to -1.E-38, 0, 1.E-38 to 1.E+38

Up to 15 digits are decoded, more digits gives a 'loss of accuracy' error.

Examples
R1 = 3.

R2 = 3.5

R3 = 3.5E3

R4 = 0.35

R5 = -.35

R6 = .35E3

R7 = .35E+3

R8 = .35E+21

R9 = 0.123456789012345E-20

Invalid examples:
R1 = 3..

R2 = 3E3

5.2.2. INTEGER data type

Integers are stored in 4 bytes in the .TMP file. An integer is a whole number with no decimal
point. Integers may have positive and negative values, negative integers must begin with a
minus sign (-). The plus sign (+) is optional for positive integers.

The valid range for integers is between -2147483647 and +2147483647.

Examples:
I1 = 1

I2 = 1111111111

I3 = -4444

Invalid examples:
I1 = 0.

I2 = 92147483647

I3 = -2E0

5.2.3. LOGICAL data type

Logicals are stored in 4 bytes on the .TMP file. Their value should be either .TRUE. or
.FALSE. (=case insensitive).

17

Examples:
L1 = .TRUE.

L2 = .FALSE.

L3 = .TrUe.

L4 = .fAlSe.

Invalid examples:
L1 = TRUE

L2 = false

L3 = 'TrUe'

5.2.4. CHARACTER data type

The CHARACTER data type is defined in the data file in a manner similar to Fortran. They
should be between quotes and should have ASCII value between decimal 32 and 127.
Separate character strings can be concatenated to form one string with the // operator.

Examples:
S1 = 'A'

S2 = 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'

S3 = 'ABC'//'DEF'//'GHI'//'JKL'

Invalid examples:
S1 = A

S2 = 'Aàâäã'
S3 = 'ABC'+'DEF'+'GHI'+'JKL'

5.2.5. Date/time data type

Date/time data are stored in 8 bytes on the .TMP file. They are returned to the user as a
DOUBLE PRECISION data type. The integer part of the value is defined as the number of days
since 1 January 1900, the fractional part corresponds to the fractional day (e.g. noon is 0.5).

The date/time data type consists of a date part and/or a time part. If both are defined they
should be separated with an underscore character (_).

Possible formats for the data part are:

jjjj/mm/dd e.g. 1994/08/31

jjjj-mm-dd e.g. 1994-08-31

dd/mmm/jjjj e.g. 3/sep/1994, also 3/september/1994

dd-mmm-jjjj e.g. 3-sep-1994, also 3-september-1994

Examples:
DT1 = 1905/12/26

DT2 = 1905-12-26

18

DT3 = 1905/0012/0026

DT4 = 26/DEC/1905

DT5 = 26-DEC-1905

DT6 = 26-decEMBER-1905

In the time part, at least hours and minutes should be available. The number of hours may
exceed 24.

Possible formats are:

hh:mm e.g. 11:20

hh:mm:ss e.g. 11:20:45

hh:mm:ss.xxxxxxxxx e.g. 11:20:45.453

Examples:
DT7 = 12:34

DT8 = 12:34:23

DT9 = 12:34:23.070

DT10 = 25:34

DT11 = 25:34:23.070

Both date part and time can be combined into one value by the underscore character (_).

Examples:
DT12 = 26-DEC-1905_12:34

DT13 = 26-DEC-1905_12:34:23

DT14 = 26-DEC-1905_12:34:23.070

5.2.6. 'Missing' data type

A value can be made missing by a dash character (-).

Examples:
M = -

See the RDMDEF routine for the default values.

5.3. Defining arrays

Arrays can be specified by repeating values of the same data type, separated by a comma, a
space or an end_of_line. Also arrays, or part of arrays, can be specified by a multiplication
factor followed by the asterisk '*' character. The data types of the elements of an array must be
identical, except that the Missing data type can occur in an array.

As has been discussed in Chapter 1, arrays can also be written as a table.

19

Examples:
A1 = 1234, -1, 1444, 10

A2 = 1234 -1 1444 10

A3 = 1234, -1,

 1444, 10

A4 = 100*1234, 10*-1, 1444, 10

A5 = 100*1234, -, 1444, 10

MTR MTD MTI MTL MTS MTDT

3. 3.D0 123 .TRUE. 'AAA' 26-DEC-1905_12:34:23.070

3. 3.D0 123 .TRUE. 'AAA' 26-DEC-1905_12:34:23.070

3. 3.D0 123 .TRUE. 'AAA' 26-DEC-1905_12:34:23.070

An array with just a single element is distinguished from a scalar value in one of the following
ways:
• Use of a multiplier asterisk, as in:

A1 = 1 * 7.3

• When given as part as a table with at least two columns, as in:
A1 A2

5 7

A degenerate array (consisting of a single element) cannot be read by RDS* routines.
Similarly, a scalar value cannot be read by RDA* routines.

5.4. Comment lines

Comment lines start with '*' in the first column, or '!' in any column. The remainder of that
line is then ignored. They can occur anywhere in the program even in tables.

Examples:
* example

AI = 1234, -1, 1444, 10 ! first specification

AI = 1234 -1 1444 10

AI = 1234, -1, ! first specification<EOL>

 1444, 10

AI = 100*1234, 10*-1, 1444, 10

MTR MTD MTI MTL MTS MTDT

3. 3.D0 123 .TRUE. 'AAA' 26-DEC-1905_12:34:23.070 ! first line

3. 3.D0 123 .TRUE. - 26-DEC-1905_12:34:23.070

* last line

3. 3.D0 - .TRUE. 'AAA' 26-DEC-1905_12:34:23.070

5.5. Separation of specifications

Different specifications can be separated by the semicolon character ';'. Also an end_of_line
when followed by a variable name is a valid separator.

20

Examples:
EE1 = 10.; FF1 = 20.; G1 = 30. <EOL>

EE1 = 10. <EOL>

FF1 = 20. <EOL>

G1 = 30. <EOL>

21

6. The ENT routines

The usual way to obtain interactive input from the user is to write a question to the screen and
to read the answer from the screen. Exactly that is the function of the simple routines
ENTCHA, ENTINT and ENTREA. They can be used to ask for a character string, an integer
value and a real value, respectively. For instance, the statement

 CALL ENTREA ('Size of square',SIZE)

writes the question "Size of square" to the screen and the number returned is assigned to the
real variable SIZE. Several such calls together form a relatively short program section for
interactive input. Successive questions are written neatly below each other and the cursor is
always in column 53 of the screen, independent of question length.

Somewhat less trivial are the subroutines ENTDCH, ENTDIN and ENTDRE. Again, the three
routines are meant for entering a character string, an integer value or a real value,
respectively. As an additional input argument, however, they accept a default value. The
default value is returned to the calling program when the user does not type in a new value
and presses the <Enter> key only. The three ENTD routines write the default value between
square brackets following the question. For instance, the statement

 CALL ENTDRE ('Size of square',2.300,SIZE)

causes the following line being written to the screen:

 Size of square [2.3]:

The user either supplies a new value or just presses <Return> to accept the default. Note that
the second argument (the default value) may also be a variable. The variable SIZE could be
used, for instance, as the second and third argument of ENTDRE. Than the (current) value of
SIZE is used as the default answer. In section 5.1 the use of that trick to simplify testing of
newly written subroutines is illustrated.

23

7. The OUT routines

The OUT routines can be used to generate neat output tables with a minimum of
programming effort. During calculations the name and value of a variable can be sent to
routine OUTDAT which behaves as a temporary output storage. It stores the received output in
a temporary file. After completion of the calculations, a table can be constructed from the
gathered data by means of a special call to OUTDAT. The table can be used as the final
result or can be imported into a spreadsheet or a statistical program.

The use of OUTDAT is illustrated in the example program TEST below. A table and a
printplot are created of the sine and cosine of x between 0 and π.

01 PROGRAM TEST

02 IMPLICIT REAL (A-Z)

03 INTEGER IX

04 PARAMETER (PI=3.141597)

05

06 * initialize output ; X is independent

07 CALL OUTDAT (1, 20, 'X', 0.0)

08

09 DO 10 IX = 0,20

10 X = FLOAT(IX) * PI/20.0

11 SINX = SIN (X)

12 COSX = COS (X)

13 * repeated output calls

14 CALL OUTDAT (2, 0, 'X' , X)

15 CALL OUTDAT (2, 0, 'SINX', SINX)

16 CALL OUTDAT (2, 0, 'COSX', COSX)

17 10 CONTINUE

18

19 * table construction

20 CALL OUTDAT (4, 0, 'sine + cosine', 0.0)

21

22 * printplot contruction

23 CALL OUTPLT (1, 'SINX')

24 CALL OUTPLT (1, 'COSX')

25 CALL OUTPLT (7, 'sine + cosine')

26

27 * delete temporary

28 CALL OUTDAT (99, 0, ' ', 0.0)

29 STOP

30 END

Listing 7.1 shows the output produced by this example program. The first parameter of the
routines OUTDAT and OUTPLT is a task parameter. The first CALL to OUTDAT in line 7 of the
above program (with ITASK=1) specifies that X will be the independent variable and that
unit=20 can be used for the output file. Subsequent calls in lines 14,15 and 16 with ITASK=2
instruct OUTDAT to store the incoming names and values in a temporary file (with unit=21).

24

The number of values that can be stored is only dependent on free disk space and not on
RAM memory. The terminal call to OUTDAT in line 20 (with ITASK=4) instructs the routine to

Listing 7.1 Output produced by example program TEST in the text.

 *--

 * Run no.: 1, (Table output)

 * sine + cosine

 X SINX COSX

 .00000 .00000 1.0000

 .15708 .15643 .98769

 .31416 .30902 .95106

 .47124 .45399 .89101

 .62832 .58779 .80902

 .78540 .70711 .70711

 .94248 .80902 .58778

 1.0996 .89101 .45399

 1.2566 .95106 .30902

 1.4137 .98769 .15643

 1.5708 1.0000 -0.19809E-05

 1.7279 .98769 -.15644

 1.8850 .95106 -.30902

 2.0420 .89101 -.45399

 2.1991 .80902 -.58779

 2.3562 .70710 -.70711

 2.5133 .58778 -.80902

 2.6704 .45399 -.89101

 2.8274 .30901 -.95106

 2.9845 .15643 -.98769

 3.1416 -0.45280E-05 -1.0000

 sine + cosine

 Variable Marker Minimum value Maximum value

 -------- ------ ------------- -------------

 SINX 1 -0.4528E-05 1.000

 COSX 2 -1.000 1.000

 Scaling: Common -1.000 1.000

 X

 .00000 I-------------------------------1-------------------------------2

 .15708 I I I 1 I 2

 .31416 I I I 1 I 2 I

 .47124 I I I 1I 2 I

25

 .62832 I I I I 1 2 I

 .78540 I I I I * I

 .94248 I I I I 2 1 I

 1.0996 I I I 2I 1 I

 1.2566 I I I 2 I 1 I

 1.4137 I I I 2 I 1

 1.5708 I-------------------------------2-------------------------------1

 1.7279 I I 2 I I 1

 1.8850 I I 2 I I 1 I

 2.0420 I I2 I I 1 I

 2.1991 I 2 I I I 1 I

 2.3562 I 2 I I I 1 I

 2.5133 I 2 I I I 1 I

 2.6704 I 2 I I 1I I

 2.8274 I 2 I I 1 I I

 2.9845 2 I I 1 I I

 3.1416 2-------------------------------1-------------------------------I

create an output table using the information stored in the temporary file. Dependent on the
value of the task variable, different output formats are chosen. Tab-delimited format (for a
spreadsheet) can be generated with ITASK=5, two column format with ITASK=6. The string
between quotes is written above the output table.

The calls to OUTPLT in line 23 and 24 (with ITASK=1) instruct the routine to put "SINX" and
"COSX" in a graph (up to 25 variables can be printed per plot). The subsequent call with
ITASK=7 causes OUTPLT to create the plot. Two different widths of the printplot are possible,
80 and 132 columns, and two different types of scaling, a common scale and individual
scales (see Table 7.1). The process can be repeated to create several print plots based on the
same output data. The final call to OUTDAT (in line 28 with ITASK=99) deletes the temporary
file.

Table 7.1 The task variable that should be supplied to OUTPLT to generate the different print plot types

Width

Scaling: 132 80

Individual 4 6

Common 5 7

27

8. Messages and Error handling

A Fatal error condition in any of the TTUTIL routines results in a call like:

 CALL FATALERR ('MODULE', 'message on what went wrong')

which displays

ERROR in MODULE: message on what went wrong

After displaying the error a STOP statement is executed. This is the only STOP statement in
the library. If necessary the STOP can be easily replaced by some other (machine dependent)
procedure halting program execution. Uniformity in error handling can be achieved by calling
FatalERR from user routines as well.

Warnings and general messages can be displayed using calls in the same style to WARNING
and MESSWRT. These routines return to the calling program.

The default output for FATALERR, WARNING, MESSWRT and all other TTUTUL routines is
the screen. Only RDINIT and RDSETS accept a logfile unit number for displaying messages.
This can be changed by calling MESSINI at some point in the user program, but usually at
the very begin of it. For instance,

 CALL MESSINI (.FALSE., . TRUE., IUNIT)

disables screen output and enables logfile output to unit IUNIT, which must be the unit
associated with an open, sequential and formatted file (e.g. use FOPENS). The use of
MESSINI affects all TTUTIL routines that generate messages, including FATALERR,
WARNING and MESSWRT. Only the ENT* routines are not affected, since they were designed
for screen and keyboard i/o. The screen and logfile settings are available to any (user) routine
by

 CALL MESSINQ (TOSCR, TOLOG, IUNIT)

If the two logicals and the unit IUNIT are subsequenty used to control local output, a uniform
program behaviour is realized in a simple way.

8.1. A logfile with version and author in a single call

A logfile usually contains the name of the program generating it, a version number and the
name of the author(s). It is also convenient to have the time of the program run stored in the
header of the logfile. All this is realized by means of a single call to OPENLOGF at the
beginning of the program run. With

 call OPENLOGF (TOSCR, ‘Test’, ProgNam, ‘1.34_Beta’, ‘Daan and Kees’, .true.)

28

a logfile TEST.LOG is created and a logfile header is composed containing the date and
time of file creation, program name, Version_String and Author_Name_String. Note that
version number is passed as a string which means that any sort of version identification will do.
Optionally, with the last argument of the OPENLOGF call, the header includes the version of
the TTUTIL library used. OPENLOGF generates a logfile unit number in the range [41,99] and
calls MESSINI to initialize message output as described above. Hence, if OPENLOGF is used,
subroutine MESSINI need not to be called anymore. The logfile unit number is available via
routine MESSINQ.

8.2. RD* routines and logfile use

After a MESSINI or OPENLOGF call, the routines RDINIT and RDSETS neglect their second
argument, which is a logfile unit number. Instead, all RD* routines follow the instructions given
in the MESSINI or OPENLOGF call. The only way to revert to default behaviour is to reset
MESSINI by

 CALL MESSINI (logical, .TRUE., 0)

The combination of a .TRUE. for logfile use and a zero unit number resets MESSINI (first
argument arbitrary). All TTUTIL routines revert to their default behaviour which is output to
screen in combination with logfile units passed to RDINIT and RDSETS as arguments in the
call.

29

9. Known problems

9.1. Illegal nesting of input sections

There are basically two types of input sections in the TTUTIL library. There are sections
starting with RDINIT or RDPARS and ending with CLOSE(unit), and there are sections starting
with RECREAD_INIT and ending with RECREAD_TERM. These input procedures cannot be
nested within themselves. For instance the following RDINIT, CLOSE(unit) input section is
illegal (irrespective of the values of the unit numbers):

CALL RDINIT (20,40,’INPUT1.DAT’)

 <possible reading of values from file>

CALL RDINIT (30,40,’INPUT2.DAT’)

 <possible reading of values from file>

CLOSE (30)

 <possible reading of values from file>

CLOSE (20)

The same applies to input sections using the RECREAD_INIT, RECREAD_TERM routines.
However, it is possible to nest RECREAD_INIT, RECREAD_TERM calls within an RDINIT,
CLOSE(unit) input section. The reverse is not possible.

All this applies equally to situations where input sections are within called subprograms. In
general this means that calls to large subprograms from within input sections should be
avoided.

9.2. Closing RD* input files

The following erroneous construction is not yet properly detected by the RD* routines:
CALL RDINIT (20,40,’INPUT1.DAT’)

 <possible reading of values from file>

CLOSE (20)

OPEN(20,FILE=…)

<continue reading of values from file>

The illegal construction here is that unit 20 is closed and re-assigned to another file within the
input section. In this situation the RD routines do not give a proper error message.

9.3. Compiler specific problems

9.3.1. Digital Visual Fortran and Compaq Visual Fortran

Use of the function ILEN leads to the following warning, which should be ignored by the user:

30

Warning: Arguments' data types are incompatible with intrinsic procedure, assume

EXTERNAL. [ILEN]

9.3.2. All Macintosh MPW Fortran compilers

If a Fortran application is linked as an MPW tool, interactive screen input with the ENT*
routines does not work. A fix requiring a small change in ttutil routine ENTCHA is available
from the
authors. Most programs which read a few values or strings from the keyboard will be linked as
applications, however. In that case there is no problem.

9.3.3. Macintosh Absoft Fortran 90 compiler

The use of the TTUTIL function LINT in Fortran 90 source code leads to problems with the
Absoft Fortran 90 compiler. It classifies LINT as an intrinsic function and gives an error
message. This compiler bug is fixed by the inlusion of the following explicit interface in the
subprogram in which LINT is being used”

INTERFACE

 FUNCTION lint (Table, iltab, x)

 REAL :: lint

 INTEGER, INTENT(IN) :: lint

 REAL, DIMENSION(iltab), INTENT(IN) :: Table

 REAL, INTENT(IN) :: X

 END FUNCTION lint

END INTERFACE

The program may still be linked with a Fortran 77 compiled TTUTIL library. This problem may
have been solved in the latest version, Absoft Fortran Pro 7.0. We do not know yet.

31

10. Reference manual of interface calls

10.1. Reading of TTUTIL format datafiles

Routine: RDINIT

Purpose: Initializes a data file in TTUTIL data file format for subsequent reading with other RD

routines. Initialization consist of checking the syntax of the datafile (parsing), and

generation of a temporary file from which actual reading can take place with the other RD

routines. If a datafile is initialized more than once with RDINIT, and the file for temporary

storage is not deleted by the user, then, for speed reasons, re-parsing will not take place.

If re-parsing must take place, then RDPARS should be used to initialize the data file,

instead of RDINIT.

Note that input sections starting with RDINIT or RDPARS cannot be nested (see Section

9.1).

Usage: call RDINIT (IUNIT, IULOG, DATFIL)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDPARS, RDDTMP

Arguments: Meaning Data

type

I and/or

O

IUNIT: Free unit number used to open random access file for I/O (used

for temporary storage), IUNIT+1 is used to open the data file

DATFIL (this unit is closed after reading)

I4 I

IULOG: >0, Open unit number of logfile, used for data file syntax

errors.

=0, Nothing is done with a logfile

I4 I

DATFIL: Name of data file to be read C*(*) I

32

Routine: RDPARS

Purpose: Initializes a data file in TTUTIL data file format for subsequent reading with other RD

routines. See RDINIT for a discussion on the difference between RDINIT and RDPARS.

Note that input sections starting with RDINIT or RDPARS cannot be nested (see Section

9.1).

Usage: call RDPARS (IUNIT, IULOG, DATFIL)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDINIT, RDPARS

Arguments: Meaning Data

type

I and/or

O

IUNIT: Free unit number used to open random access file for I/O (used

for temporary storage), IUNIT+1 is used to open the data file

DATFIL (this unit is closed after reading)

I4 I

IULOG: >0, Open unit number of logfile, used for data file syntax

errors.

=0, Nothing is done with a logfile

I4 I

DATFIL: Name of data file to be read C*(*) I

Routine: RDDTMP

Purpose: Deletes the temporary files created by the RD routines. In most situations all

temporaries can be deleted. The name of a possibly used rerun file is known locally in

RDDATA and there is a list of data files available which have been opened with RDINIT.

The TMP files belonging to this list are deleted as far as they are still there.

Usage: call RDDTMP (IUNIT)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDINIT, RDPARS

Arguments: Meaning Data

type

I and/or

O

IUNIT: Unit number used to delete the temporary files (should not

currently be assigned to any file)

I4 I

33

Routine: RDSETS

Purpose: Initializes the RD system for reading data from a so called "rerun file" containing sets of

variable names with associated values. The sets are used to replace corresponding data

items in a normal data file analyzed with RDINIT or RDPARS and read with the RDS*,

RDA*, RDM*, or RDF* routines.

Usage: call RDSETS (IUNIT, IULOG, SETFIL, INS)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDINIT, RDPARS, RDFROM

Arguments: Meaning Data

type

I and/or

O

IUNIT Free unit number used to open random access file for I/O (used

for temporary storage), IUNIT+1 is used to open the data file

DATFIL (this unit is closed after reading)

I4 I

IULOG: >0, Open unit number of logfile, used for data file syntax

errors.

=0, Nothing is done with a logfile

I4 I

SETFIL Name of rerun file containing sets. When an empty string is

supplied, the rerun facility is disactivated.

C*(*) I

INS Number of sets on file (when exists minimum 1) I4 O

Routine: RDFROM

Purpose: Instructs the RD system (and the user interfaces RDS*, RDA*, RDM*, and RDF*) to

use the IS-th set from the rerun file. Note that set 0 (zero) means that standard data file

values are used. Selecting set 0 does not require a previous call to RDSETS and set 0

may also be selected when no rerun file exists or when it is empty. Warnings are

generated on non-used variables of the previous set. If desired this may result in a fatal

error (see FATAL). Moving from set 0 to another set, no check is carried out. See also

RDSETS.

Usage: call RDFROM (IS, FATAL)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDSETS

Arguments: Meaning Data

type

I and/or

O

IS =0, data file contents selected, disable replacement

>0, set number selected

I4 I

FATAL =.false., non-used variables gives text to logfile

=.true., non-used variables gives fatal error

L4 I

34

Routine: RDINQR

Purpose: Returns a flag for the presence of variable XNAME in the current data file. Presence on

rerun file of the variable is not determined.

Usage: <logical variable> = RDINQR (XNAME)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDINQR2, RDINLV

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

RDINQR = .true., Variable occurs in current data file

=.false., Variable not present

L4 O

Routine: RDINQR2

Purpose: Returns a flag for the presence of variable XNAME in the current data file, if no rerun set

is selected, the variable is checked in the standard datafile, otherwise the variable is

looked up in the selected rerun set.

Usage: <logical variable> = RDINQR2 (XNAME)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDINQR, RDINLV

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

RDINQR =.true., Variable occurs in selected data

=.false., Variable not present

L4 O

Routine: RDINLV

Purpose: Returns a list of variables, if no rerun set is selected, the names of the standard datafile

are returned, otherwise the names of the rerun file are returned.

Usage: call RDINLV (SETFLAG, VARLIS, VARLIS_MN, VARLIS_AN)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDINQR, RDINQR2

35

Arguments: Meaning Data

type

I and/or

O

SETFLAG Flag through which is indicated whether information from a possibly

active rerun set is wanted:

=.true., information from active set is returned

=.false., information from standard datafile is returned

L4 I

VARLIS Character array of dimension VARLIS_MN in which list of variables

is returned. Note that variable names in the data files can be up to

31 characters wide. Declare the length of VARLIS accordingly.

C*(*) O

VARLIS_MN Maximum number of names that can be returned I4 I

VARLIS_AN Actual number of variable names returned in list I4 O

Routine: RDINNE

Purpose: Returns number of elements of a variable, if no rerun set is selected, information from

the standard datafile is returned, otherwise information of the variable in the particular

rerun set is returned.

Usage: call RDINNE (VAR_NAME, NO_EL)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDINLV

Arguments: Meaning Data

type

I and/or

O

VAR_NAME Name for which information is requested C*(*) I

NO_EL Number of elements of VAR_NAME I4 O

Routine: RDINDT

Purpose: Returns the data type of a variable, if no rerun set is selected, information from the

standard datafile is returned, otherwise information of the variable in the particular rerun

set is returned. Returned data types can be:

I - Integer

F - Floating point

L - Logical

C - Character string

T - Date/time

- - Missing data type

Usage: call RDINDT (VAR_NAME, DATA_TYPE)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDINLV

36

Arguments: Meaning Data

type

I and/or

O

VAR_NAME Name for which information is requested C*(*) I

DATA_TYPE Data type of VAR_NAME C*(*) O

Routine: RDINAR

Purpose: Returns a flag whether a variable is an array in the datafile.

Usage: <logical variable> = RDINAR (VAR_NAME)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDINLV

Arguments: Meaning Data

type

I and/or

O

VAR_NAME Name for which information is requested C*(*) I

Routine: RDSCHA

Purpose: Reads a single character string value from a TTUTIL format data file. The reading should

be initialized with RDINIT or RDPARS.

Usage: call RDSCHA (XNAME, X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable to be read C*(*) I

X Value of variable C*(*) O

37

Routine: RDSDOU

Purpose: Reads a single DOUBLE PRECISION value from a TTUTIL format data file. The reading

should be initialized with RDINIT or RDPARS.

Usage: call RDSDOU (XNAME, X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDSDOR

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Value of variable R8 O

Routine: RDSINT

Purpose: Reads a single INTEGER value from a TTUTIL format data file. The reading should be

initialized with RDINIT or RDPARS.

Usage: call RDSINT (XNAME, X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDSINR

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Value of variable I4 O

Routine: RDSLOG

Purpose: Reads a single LOGICAL value from a TTUTIL format data file. The reading should be

initialized with RDINIT or RDPARS.

Usage: call RDSLOG (XNAME, X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

XNAME: Name of variable C*(*) I

38

X: Value of variable L4 O

Routine: RDSREA

Purpose: Reads a single REAL value from a TTUTIL format data file. The reading should be

initialized with RDINIT or RDPARS.

Usage: call RDSREA (XNAME, X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDSRER

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Value of variable R4 O

Routine: RDSTIM

Purpose: Reads a single TIME value from a TTUTIL format data file. The reading should be

initialized with RDINIT or RDPARS.

Usage: call RDSTIM (XNAME, X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Value of variable R8 O

Routine: RDACHA

Purpose: Reads an array of CHARACTER values from a TTUTIL format data file. The reading

should be initialized with RDINIT or RDPARS. The number of values on file is returned as

IFND.

Usage: call RDACHA (XNAME, X, ILDEC, IFND)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDFCHA

39

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC C*(*) O

ILDEC Declared length of X I4 I

IFND Number of values found on file I4 O

Routine: RDADOU

Purpose: Reads an array of DOUBLE PRECISION values from a TTUTIL format data file. The

reading should be initialized with RDINIT or RDPARS. The number of values on file is

returned as IFND.

Usage: call RDADOU (XNAME, X, ILDEC, IFND)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDFDOU, RDADOR, RDFDOR

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC R8 O

ILDEC Declared length of X I4 I

IFND Number of values found on file I4 O

Routine: RDAINT

Purpose: Reads an array of INTEGER values from a TTUTIL format data file. The reading should

be initialized with RDINIT or RDPARS. The number of values on file is returned as IFND.

Usage: call RDAINT (XNAME, X, ILDEC, IFND)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDFINT, RDAINR, RDFINR

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC I4 O

ILDEC Declared length of X I4 I

IFND Number of values found on file I4 O

40

Routine: RDALOG

Purpose: Reads an array of LOGICAL values from a TTUTIL format data file. The reading should

be initialized with RDINIT or RDPARS. The number of values on file is returned as IFND.

Usage: call RDALOG (XNAME, X, ILDEC, IFND)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDFLOG

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC L4 O

ILDEC Declared length of X I4 I

IFND Number of values found on file I4 O

Routine: RDAREA

Purpose: Reads an array of REAL values from a TTUTIL format data file. The reading should be

initialized with RDINIT or RDPARS. The number of values on file is returned as IFND.

Usage: call RDAREA (XNAME, X, ILDEC, IFND)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDFREA, RDARER, RDFRER

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC R4 O

ILDEC Declared length of X I4 I

IFND Number of values found on file I4 O

Routine: RDATIM

Purpose: Reads an array of TIME values from a TTUTIL format data file. The reading should be

initialized with RDINIT or RDPARS. The number of values on file is returned as IFND.

Usage: call RDATIM (XNAME, X, ILDEC, IFND)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDFTIM

41

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC R8 O

ILDEC Declared length of X I4 I

IFND Number of values found on file I4 O

Routine: RDFCHA

Purpose: Reads a fixed number of elements into a CHARACTER array from a TTUTIL format data

file. Data file reading should be initialized with RDINIT or RDPARS. A number of values

on file different from IVALS results in an error message.

Usage: call RDFCHA (XNAME, X, ILDEC, IVALS)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDACHA

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC C*(*) O

ILDEC Declared length of X I4 I

IVALS Number of values to be present on file I4 I

Routine: RDFDOU

Purpose: Reads a fixed number of elements into a DOUBLE PRECISION array from a TTUTIL

format data file. Data file reading should be initialized with RDINIT or RDPARS. A

number of values on file different from IVALS results in an error message.

Usage: call RDFDOU (XNAME, X, ILDEC, IVALS)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDADOU, RDADOR, RDFDOR

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC R8 O

ILDEC Declared length of X I4 I

IVALS Number of values to be present on file I4 I

42

Routine: RDFINT

Purpose: Reads a fixed number of elements into an INTEGER array from TTUTIL format data.

Data file reading should be initialized with RDINIT or RDPARS. A number of values on

file different from IVALS results in an error message.

Usage: call RDFINT (XNAME, X, ILDEC, IVALS)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDAINT, RDAINR, RDFINR

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC I4 O

ILDEC Declared length of X I4 I

IVALS Number of values to be present on file I4 I

Routine: RDFLOG

Purpose: Reads a fixed number of elements into a LOGICAL array from TTUTIL format data. Data

file reading should be initialized with RDINIT or RDPARS. A number of values on file

different from IVALS results in an error message.

Usage: call RDFLOG (XNAME, X, ILDEC, IVALS)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDALOG

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC L4 O

ILDEC Declared length of X I4 I

IVALS Number of values to be present on file I4 I

43

Routine: RDFREA

Purpose: Reads a fixed number of elements into a REAL array from TTUTIL format data. Data file

reading should be initialized with RDINIT or RDPARS. A number of values on file different

from IVALS results in an error message.

Usage: call RDFREA (XNAME, X, ILDEC, IVALS)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDAREA, RDARER, RDFRER

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC R4 O

ILDEC Declared length of X I4 I

IVALS Number of values to be present on file I4 I

Routine: RDFTIM

Purpose: Reads a fixed number of elements into a TIME array from TTUTIL format data. Data file

reading should be initialized with RDINIT or RDPARS. A number of values on file different

from IVALS results in an error message.

Usage: call RDFTIM (XNAME, X, ILDEC, IVALS)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDATIM

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

X Array itself of dimension ILDEC R8 O

ILDEC Declared length of X I4 I

IVALS Number of values to be present on file I4 I

44

Routine: RDADOR

Purpose: Reads an array of DOUBLE PRECISION values from a TTUTIL format data file and

carries out a range check on the returned values. The reading should be initialized with

RDINIT or RDPARS. The number of values on file is returned as IFND. If a value on the

datafile is missing and the value for missing data that will be returned by this routine is

outside the valid range, then this is not flagged.

Usage: call RDADOR (XNAME, XMIN, XMAX, X, ILDEC, IFND)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDADOU, RDFDOU, RDFDOR

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

XMIN Minimum acceptable value R8 I

XMAX Maximum acceptable value R8 I

X Array itself of dimension ILDEC R8 O

ILDEC Declared length of X I4 I

IFND Number of values found on file I4 O

Routine: RDAINR

Purpose: Reads an array of INTEGER values from a TTUTIL format data file and carries out a

range check on the returned values. The reading should be initialized with RDINIT or

RDPARS. The number of values on file is returned as IFND. If a value on the datafile is

missing and the value for missing data that will be returned by this routine is outside the

valid range, then this is not flagged.

Usage: call RDAINR (XNAME, XMIN, XMAX, X, ILDEC, IFND)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDAINT, RDFINT, RDFINR

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

XMIN Minimum acceptable value I4 I

XMAX Maximum acceptable value I4 I

X Array itself of dimension ILDEC I4 O

ILDEC Declared length of X I4 I

IFND Number of values found on file I4 O

45

Routine: RDARER

Purpose: Reads an array of REAL values from a TTUTIL format data file and carries out a range

check on the returned values. The reading should be initialized with RDINIT or RDPARS.

The number of values on file is returned as IFND. If a value on the datafile is missing

and the value for missing data that will be returned by this routine is outside the valid

range, then this is not flagged.

Usage: call RDARER (XNAME, XMIN, XMAX, X, ILDEC, IFND)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDAREA, RDFREA, RDFRER

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

XMIN Minimum acceptable value R4 I

XMAX Maximum acceptable value R4 I

X Array itself of dimension ILDEC R4 O

ILDEC Declared length of X I4 I

IFND Number of values found on file I4 O

Routine: RDFDOR

Purpose: Reads a fixed number of elements into a DOUBLE PRECISION array from a TTUTIL

format data file and carries out a range check on the returned values. Data file reading

should be initialized with RDINIT or RDPARS. A number of values on file different from

IVALS results in an error message. If a value on the datafile is missing and the value for

missing data that will be returned by this routine is outside the valid range, then this is

not flagged.

Usage: call RDFDOR (XNAME, XMIN, XMAX, X, ILDEC, IVALS)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDADOU, RDFDOU, RDADOR

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

XMIN Minimum acceptable value R8 I

XMAX Maximum acceptable value R8 I

X Array itself of dimension ILDEC R8 O

ILDEC Declared length of X I4 I

IVALS Number of values to be present on file I4 I

46

Routine: RDFINR

Purpose: Reads a fixed number of elements into an INTEGER array from a TTUTIL format data file

and carries out a range check on the returned values. Data file reading should be

initialized with RDINIT or RDPARS. A number of values on file different from IVALS

results in an error message. If a value on the datafile is missing and the value for

missing data that will be returned by this routine is outside the valid range, then this is

not flagged.

Usage: call RDFINR (XNAME, XMIN, XMAX, X, ILDEC, IVALS)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDAINT, RDFINT, RDAINR

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

XMIN Minimum acceptable value I4 I

XMAX Maximum acceptable value I4 I

X Array itself of dimension ILDEC I4 O

ILDEC Declared length of X I4 I

IVALS Number of values to be present on file I4 I

Routine: RDFRER

Purpose: Reads a fixed number of elements into a REAL array from a TTUTIL format data file and

carries out a range check on the returned values. Data file reading should be initialized

with RDINIT or RDPARS. A number of values on file different from IVALS results in an

error message. If a value on the datafile is missing and the value for missing data that

will be returned by this routine is outside the valid range, then this is not flagged.

Usage: call RDFRER (XNAME, XMIN, XMAX, X, ILDEC, IVALS)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDAREA, RDFREA, RDARER

Arguments: Meaning Data

type

I and/or

O

XNAME Name of array, for which data are on file C*(*) I

XMIN Minimum acceptable value R4 I

XMAX Maximum acceptable value R4 I

X Array itself of dimension ILDEC R4 O

ILDEC Declared length of X I4 I

IVALS Number of values to be present on file I4 I

47

Routine: RDSDOR

Purpose: Reads a single DOUBLE PRECISION value from a TTUTIL format data file and carries

out a range check on the returned value. The reading should be initialized with RDINIT or

RDPARS. If a value on the datafile is missing and the value for missing data that will be

returned by this routine is outside the valid range, then this is not flagged.

Usage: call RDSDOR (XNAME, XMIN, XMAX, X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDSDOU

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

XMIN Minimum acceptable value R8 I

XMAX Maximum acceptable value R8 I

X Value of variable R8 O

Routine: RDSINR

Purpose: Reads a single INTEGER value from a TTUTIL format data file and carries out a range

check on the returned value. The reading should be initialized with RDINIT or RDPARS. If

a value on the datafile is missing and the value for missing data that will be returned by

this routine is outside the valid range, then this is not flagged.

Usage: call RDSINR (XNAME, XMIN, XMAX, X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDSINT

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

XMIN Minimum acceptable value I4 I

XMAX Maximum acceptable value I4 I

X Value of variable I4 O

48

Routine: RDSRER

Purpose: Reads a single REAL value from a TTUTIL format data file and carries out a range check

on the returned value. The reading should be initialized with RDINIT or RDPARS. If a

value on the datafile is missing and the value for missing data that will be returned by

this routine is outside the valid range, then this is not flagged.

Usage: call RDSRER (XNAME, XMIN, XMAX, X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDSREA

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

XMIN Minimum acceptable value R4 I

XMAX Maximum acceptable value R4 I

X Value of variable R4 O

Routine: RDMDEF

Purpose: Resets the value returned for missing data to the default values. Being –99.99 for reals,

-99 for integers, -99.99D00 for double precision and date/time variables, ‘- MISSING -’ for

character strings, and .FALSE. for logicals.

Usage: call RDMDEF

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDMCHA, RDMREA, RDMDOU, RDMINT, RDMLOG, RDMTIM

Arguments: Meaning Data

type

I and/or

O

none

Routine: RDMCHA

Purpose: Sets the value to be returned for missing CHARACTER strings.

Usage: call RDMCHA (X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDMDEF

49

Arguments: Meaning Data

type

I and/or

O

X Missing value to be returned when a value is missing on the data

file

C*(*) I

Routine: RDMDOU

Purpose: Sets the value to be returned for missing DOUBLE PRECISION reals.

Usage: call RDMDOU (X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDMDEF

Arguments: Meaning Data

type

I and/or

O

X Missing value to be returned when a value is missing on the data

file

R8 i

Routine: RDMINT

Purpose: Sets the value to be returned for missing INTEGERs.

Usage: call RDMINT (X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDMDEF

Arguments: Meaning Data

type

I and/or

O

X Missing value to be returned when a value is missing on the data

file

I4 I

Routine: RDMLOG

Purpose: Sets the value to be returned for missing LOGICALs.

Usage: call RDMLOG (X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDMDEF

50

Arguments: Meaning Data

type

I and/or

O

X Missing value to be returned when a value is missing on the data

file

L4 I

Routine: RDMREA

Purpose: Sets the value to be returned for missing REALs.

Usage: call RDMREA (X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDMDEF

Arguments: Meaning Data

type

I and/or

O

X Missing value to be returned when a value is missing on the data

file

R4 I

Routine: RDMTIM

Purpose: Sets the value to be returned for missing DATE/TIME.

Usage: call RDMTIM (X)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDMDEF

Arguments: Meaning Data

type

I and/or

O

X Missing value to be returned when a value is missing on the data

file

R8 I

51

10.2. Writing of TTUTIL format datafiles

Routine: WRINIT

Purpose: Initializes the WR system to write data in TTUTIL format to a datafile. The specified file is

left open for writing by the other WR routines. After closing the file, it can be reread with

the RDINIT or RDPARS routine.

Usage: call WRINIT (UNIT_X, FILE)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

UNIT_X Unit number to open file with I4 I

FILE File name to use for output C*(*) I

Routine: WRACHA

Purpose: Writes the character array XNAME to the output file in TTUTIL format. The output file has

to be openened first with WRINIT.

Usage: call WRACHA (XNAME, X, ILDEC, IFND)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Array with values of dimension ILDEC C*(*) I

ILDEC Declared length of X I4 I

IFND Number of values to write to file I4 I

52

Routine: WRADOU

Purpose: Writes the double precision array XNAME to the output file in TTUTIL format. The output

file has to be openened first with WRINIT.

Usage: call WRADOU (XNAME, X, ILDEC, IFND)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Array with values of dimension ILDEC R8 I

ILDEC Declared length of X I4 I

IFND Number of values to write to file I4 I

Routine: WRAINT

Purpose: Writes the integer array XNAME to the output file in TTUTIL format. The output file has to

be openened first with WRINIT.

Usage: call WRAINT (XNAME, X, ILDEC, IFND)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Array with values of dimension ILDEC I4 I

ILDEC Declared length of X I4 I

IFND Number of values to write to file I4 I

Routine: WRALOG

Purpose: Writes the logical array XNAME to the output file in TTUTIL format. The output file has to

be openened first with WRINIT.

Usage: call WRALOG (XNAME, X, ILDEC, IFND)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

53

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Array with values of dimension ILDEC L4 I

ILDEC Declared length of X I4 I

IFND Number of values to write to file I4 I

Routine: WRAREA

Purpose: Writes the real array XNAME to the output file in TTUTIL format. The output file has to be

openened first with WRINIT.

Usage: call WRAREA (XNAME, X, ILDEC, IFND)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Array with values of dimension ILDEC R4 I

ILDEC Declared length of X I4 I

IFND Number of values to write to file I4 I

Routine: WRATIM

Purpose: Writes the date/time array XNAME to the output file in TTUTIL format. The output file has

to be openened first with WRINIT.

Usage: call WRATIM (XNAME, X, ILDEC, IFND)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Array with values of dimension ILDEC R8 I

ILDEC Declared length of X I4 I

IFND Number of values to write to file I4 I

54

Routine: WRSCHA

Purpose: Writes a single CHARACTER value to a data file. The output file has to be openened

first with WRINIT.

Usage: call WRSCHA (XNAME, X)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Value of variable C*(*) I

Routine: WRSDOU

Purpose: Writes a single DOUBLE PRECISION value to a data file. The output file has to be

openened first with WRINIT.

Usage: call WRSDOU (XNAME, X)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Value of variable R8 I

Routine: WRSINT

Purpose: Writes a single INTEGER value to a data file. The output file has to be openened first

with WRINIT.

Usage: call WRSINT (XNAME, X)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

55

X Value of variable I4 I

Routine: WRSLOG

Purpose: Writes a single LOGICAL value to a data file. The output file has to be openened first

with WRINIT.

Usage: call WRSLOG (XNAME, X)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Value of variable L4 I

Routine: WRSREA

Purpose: Writes a single REAL value to a data file. The output file has to be openened first with

WRINIT.

Usage: call WRSREA (XNAME, X)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Value of variable R4 I

Routine: WRSTIM

Purpose: Writes a single date/time value to a data file. The output file has to be openened first with

WRINIT.

Usage: call WRSTIM (XNAME, X)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WRINIT

56

Arguments: Meaning Data

type

I and/or

O

XNAME Name of variable C*(*) I

X Value of variable R8 I

10.3. Interactive input

Routine: ENTCHA

Purpose: Interactive entry of a character string. Writes the text QUEST on screen as a "question"

and returns the entered string to the calling program.

Usage: call ENTCHA (QUEST, X)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ENTDCH

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

X Entered character string C*(*) O

Routine: ENTDCH

Purpose: Interactive entry of a CHARACTER string with a default. Writes the text QUEST on

screen as a "question" and returns the entered string to the calling program.

Usage: call ENTDCH (QUEST, SDEF, S)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ENTCHA

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

SDEF Default string, assumed when <Return> is given C*(*) I

S Entered CHARACTER string C*(*) O

57

Routine: ENTINT

Purpose: Interactive entry of an INTEGER number Writes the text QUEST on screen as a

"question" and returns the entered number to the calling program.

Usage: call ENTINT (QUEST, IX)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ENTDIN

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

IX Entered number I4 O

Routine: ENTDIN

Purpose: Interactive entry of an INTEGER number with a default. Writes the text QUEST on

screen as a "question" and returns the entered number to the calling program.

Usage: call ENTDIN (QUEST, IXDEF, IX)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ENTINT

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

IXDEF Default value assumed when <Return> is given I4 I

IX Entered INTEGER number I4 O

Routine: ENTREA

Purpose: Interactive entry of a REAL number. Writes the text QUEST on screen as a "question"

and returns the entered number to the calling program.

Usage: call ENTREA (QUEST, X)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ENTDRE

58

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

X Entered REAL number R4 O

Routine: ENTDRE

Purpose: Interactive entry of a REAL number with a default. Writes the text QUEST on screen as a

"question" and returns the entered number to the calling program.

Usage: call ENTDRE (QUEST, XDEF, X)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ENTREA

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

XDEF Default value assumed when <Return> is given R4 I

X Entered REAL number R4 O

Routine: ENTDOU

Purpose: Interactive entry of a DOUBLE PRECISION number. Writes the text QUEST on screen

as a "question" and returns the entered number to the calling program.

Usage: call ENTDOU (QUEST, X)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 1-July-1999

See also: ENTDDO

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

X Entered DOUBLE PRECISION number R8 O

59

Routine: ENTDDO

Purpose: Interactive entry of a DOUBLE PRECISION number with a default. Writes the text

QUEST on screen as a "question" and returns the entered number to the calling program.

Usage: call ENTDDO (QUEST, XDEF, X)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 1-July-1999

See also: ENTDOU

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

XDEF Default value assumed when <Return> is given R8 I

X Entered DOUBLE PRECISION number R8 O

Routine: ENTYNO

Purpose: Interactive entry of a boolean Yes / No, given by hitting a single Y or N key. Writes the

text QUEST on screen as a "question" and returns the entered value to the calling

program. A ‘Y’ is returned as a .TRUE., a ‘N’ as .FALSE..

Usage: CALL ENTYNO (QUEST, X)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 1-July-1999

See also: ENTDYN

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

X .TRUE. when Y was entered, .FALSE. when N was entered L4 O

Routine: ENTDYN

Purpose: Interactive entry of a boolean Yes / No, given by hitting a single Y or N key, with a

default. Writes the text QUEST on screen as a "question" and returns the entered value

to the calling program. A ‘Y’ is returned as a .TRUE., a ‘N’ as .FALSE..

Usage: call ENTDYN (QUEST, XDEF, X)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 1-July-1999

See also: ENTYNO

60

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

XDEF Default value assumed when <Return> is given L4 I

X .TRUE. when Y was entered, .FALSE. when N was entered L4 O

Routine: ENTTIM

Purpose: Interactive entry of a date / time value. Writes the text QUEST on screen as a "question"

and returns the entered number to the calling program. Allowed formats are given in

Section 5.2.5.

Usage: call ENTTIM (QUEST, X)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 1-July-1999

See also: ENTDTI, date and time routines in Section 10.11.

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

X Entered Date / Time value R8 O

Routine: ENTDTI

Purpose: Interactive entry of a date / time value with a default. Writes the text QUEST on screen

as a "question" and returns the entered data / time to the calling program. Allowed

formats are given in Section 5.2.5.

Usage: call ENTDTI (QUEST, XDEF, X)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 1-July-1999

See also: ENTTIM, date / time routines in Section 5.2.5.

Arguments: Meaning Data

type

I and/or

O

QUEST Character string, for instance 'Give the value for P' C*(*) I

XDEF Default value assumed when <Return> is given R8 I

X Entered Date / Time value R8 O

61

10.4. Output to file

Routine: COPFL2

Purpose: Copies the contents of a file to an output file with unit number IOUT (the output file

should already be open and is left open). The input file is opened by COPFL2 and closed

after the contents has been copied. If the input file does not exist, nothing is done.

Usage: call COPFL2 (IIN, FILE, IOUT, HEADER)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WR* routines

Arguments: Meaning Data

type

I and/or

O

IIN Unit number to be used to open input file with I4 I

FILE File name of input file C*(*) I

IOUT Unit number of file where input file should be copied to I4 I

HEADER Flags if information header should be written to the output file:

=.true., header is written

=.false., header is not written

L4 I

Routine: OUTAR2

Purpose: This routine transfers the contents of an array to the subroutine OUTDAT which can

handle only single names and values. The OUTAR2 call works like a series of calls to

OUTDAT with single array elements. For example the following calls to OUTDAT:

CALL OUTDAT (2,0,’ A(1) ’,A(1))

CALL OUTDAT (2,0,’ A(2) ’,A(2))

CALL OUTDAT (2,0,’ A(3) ’,A(3))

can be abbreviated by a single call with OUTAR2:

CALL OUTAR2 (‘A’,A,1,3,1,3)

Array subscripts between –99 and 999 are accepted.

Usage: call OUTAR2 (NAME, ARRAY, LDEC, UDEC, LST, UST)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: OUTDAT, OUTPLT

Arguments: Meaning Data

type

I and/or

O

NAME Name of array to be written C*(*) I

ARRAY Array itself of at least dimension I2 R4 I

LDEC Lower declared bound of ARRAY I4 I

62

UDEC Upper declared bound of ARRAY I4 I

I1 Array element where output should start I4 I

I2 Array element where output should finish I4 I

Routine: OUTCOM

Purpose: Stores a text string which is written to the output file generated by OUTDAT. A maximum

number of 25 strings of 80 characters can be stored. Repeated input of the same string

is neglected. For example:

CALL OUTCOM ('Potential production')

CALL OUTCOM ('and water limited production')

CALL OUTDAT (4, 0, 'Final output',0.)

both text strings will appear in the final output file.

Usage: call OUTCOM (STR)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: OUTDAT, OUTPLT

Arguments: Meaning Data

type

I and/or

O

STR Text string C*(*) I

63

Routine: OUTDAT

Purpose: Can be used to generate output tables in files from within simulation models. It should be

initialized first, to define the name of the independent variable (the variable printed in the

leftmost column) and to set unit numbers (ITASK=1). The name and value of the data are

stored by a series of calls with ITASK=2. Each call supplies one name and value to the

OUTDAT system. The stored data can be converted to an output file by a call with

ITASK=4, 5, or 6. Storage, prior to generating a table is on disk. A maximum of 500

names can be stored, the number of values depends on free disk space.

After generation of the output, OUTDAT is ready to be initialized again, if necessary with

another independent variable. This initialization, storing of and creation of the output table

may be repeated many times. Another possibility is to repeatedly initialize OUTDAT

(ITASK=1) and store data (ITASK=2) but to have all the output tables created by a single

call to OUTDAT shortly before termination of the program. In that case ITASK values of

14, 15 and 16 should be used.

If the reruns are carried out with the RD system, then the selected set number will be

printed above the generated output tables.

Usage: CALL OUTDAT (ITASK, IUNIT, VARNAME, VARVALUE)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: OUTPLT

Arguments: Meaning Data

type

I and/or

O

ITASK =1, Initializes the OUTDAT system, opens a temporary file for

storage and stores the name of the independent variable

and the unit numbers for file I/O. OUTDAT may be

reinitialized after an output ‘session’, even with a new

independent variable name.

=2, Stores the name and value of the variable in the

temporary file.

=3, Selects the variables for writing to the output file.

=4, Generates an output table in the output file, the

independent variable and the first 8 dependent variables in

the first block of output, the independent variable and the

second set of 8 variables in the second block etc. untill all

variables have been printed.

=5, Generates a similar table, but now the values and names

are separed by tab characters and the output blocks have

a maximum of 100 independent variables. This output is

useful for importing in spreadsheets.

=6, Generates a two column output table, the independent

variable and the first dependent variable. Below that the

independent variable and the second dependent variable

C*(*) I

64

etc.

=14, Creates output tables like ITASK=4 but now for all sets in

the temporary output file.

=15, idem 14 but now with spreadsheet output

=16, idem 14 but now with two column output

IUNIT Unit number used for writing to output file. If the unit defined

during ITASK=1 is open this is used for output. Otherwise a file

RES.DAT using that unit is created. IUNIT+1 is used for I/O to the

temporary file.

I I

VARNAME String, name of variable or meaningfull text, (up to 36 characters

will be used). If ITASK is 4, 5, 6, 14, 15, or 16 this string will be

written to the output file as title (not limited to 36 characters then).

C*(*) I

VARVALUE Value of variable (only used at ITASK=2). R4 I

Routine: OUTPLT

Purpose: Designed to be used in conjunction with OUTDAT, which is used to write variable names

and values to a temporary file. OUTPLT is used to printplot a selection of the stored

variables. By repeated calls to the OUTPLT subroutine with ITASK=1, names of variables

for which the plot is wanted can be given to the subroutine. By a call with ITASK=4, 5, 6,

or 7, printplots are generated with a width of 80 or 132 characters, either with individual

scaling or with common scaling (all variables scaled to the smallest and largest value in

the data set). The printplot pertains to the last set of the temporary file. If one wants

multiple plots for all sets in the temporary file, ITASK values of 14, 15, 16 or 17 should

be used. For example, define DTGA and WSO to be plotted and create printplot using

wide format, common scaling:

CALL OUTPLT (1,'DTGA')

CALL OUTPLT (1,'WSO')

CALL OUTPLT (5,'Plot title')

Usage: call OUTPLT (ITASK, RN)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: OUTDAT

Arguments: Meaning Data

type

I and/or

O

ITASK Defines task of the subroutine:

=1, instruct the routine to store variable names for use in the

printplot

=4, wide format, individual scale plot of last set

=5, wide format, common scale plot of last set

=6, small format, individual scale plot of last set

=7, small format, common scale plot of last set

=14, wide format, individual scale plot of all sets

=15, wide format, common scale plot of all sets

=16, small format, individual scale plot of all sets

I4 I

65

=17, small format, common scale plot of all sets

If the unit defined during ITASK=1 of OUTDAT is open, this is

used for output. Otherwise a file 'res.dat' with that unit is created.

RN when ITASK = 1: name of variable to be plotted, up to 36

characters will be used. The value of the variable must have been

stored by previous calls to OUTDAT. When ITASK <>1 the text is

printed above the plot(s).

C*(*) I

Routine: OUTSEL

Purpose: Performs a sequence of OUTDAT calls in order to generate the table(s) specified in the

variable selection array PRSEL. When there are no variables selected, a single call to

OUTDAT produces table(s) using default variable order. This routine avoids having to do

multiple calls to OUTDAT to select variable to appear in the output

Usage: call OUTSEL (PRSEL, IMNPRS, INPRS, IPFORM, MESSAG)

Author(s): Daniël van Kraalingen, Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: OUTDAT

Arguments: Meaning Data

type

I and/or

O

PRSEL Character string array with names of selected variables C*(*) I

IMNPRS Declared length of array PRSEL I4 I

INPRS Used length of array PRSEL I4 I

IPFORM Controls OUTDAT table format (see OUTDAT header) I4 I

MESSAG Text message for OUTDAT call C*(*) I

10.5. File and unit handling

Routine: DELFIL

Purpose: Deletes the specified file name and can (if flag is turned on) give an error if the file does

not exist

Usage: call DELFIL (FILE_NAME, ERR)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: FLEXIST

Arguments: Meaning Data

type

I and/or

O

FILE_NAME Name of file to be deleted C*(*) I

66

ERR If .TRUE. causes fatal error when the file does not exist L4 I

Routine: EXTENS

Purpose: Changes extension of filename. Output filename is in uppercase characters. The old

extension is the part of the filename that follows a dot in the filename (.). A dot within a

directory name is neglected (bracket], colon :, backslash \, slash / on VAX, Macintosh,

MS-DOS and Unix respectively). The input filename does not necessarily has to have an

extension. For example:

FILEIN NEWEXT FILEOU

Name dat NAME.DAT

Name.dat log NAME.LOG

Name.dat log NAME.LOG

Name.dat . NAME

DISK$USER:[AC.MINE]Name dat DISK$USER:[AC.MINE]NAME.DAT

HD:Mine.Old:Name dat HD:MINE.OLD:NAME.DAT

C:\MINE.OLD\Name dat C:\MINE.OLD\NAME.DAT

D:/MINE.OLD/Name dat D:/MINE.OLD/NAME.DAT

Usage: call EXTENS (FILEIN, NEWEXT, ICHECK, FILEOU)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: FOPENS

Arguments: Meaning Data

type

I and/or

O

FILEIN Input filename with old or without extension C*(*) I

NEWEXT New extension, is set to uppercase C*(*) I

ICHECK =1, check on equal output and input extension

=0, no check

I4 I

FILEOU Output filename with new extension in uppercase C*(*) O

Routine: FLEXIST

Purpose: Returns a flag whether the supplied filename exists

Usage: <logical variable> = FLEXIST (FILE_NAME)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: DELFIL

Arguments: Meaning Data

type

I and/or

O

FILE_NAME Filename to check C*(*) I

FLEXIST Flag whether file exists or not L4 O

67

Routine: FLNAME

Purpose: Prepares file name for opening (for now only carries out a LOWERC call). This routine is

called inside from TTUTIL from every routine which accepts a file name. This routine

ensures that conflicts will not arise on file systems which are case sensitive.

Usage: call FLNAME (STRING)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: FOPENS

Arguments: Meaning Data

type

I and/or

O

STRING File name to be processed C*(*) I/O

Routine: FOPENG

Purpose: Opens formatted, unformatted or binary files with sequential or direct access. Using

FOPENG garantees portability on platforms which have a case sensitive file system.

This is achieved by a lowercase operation of the file name inside the FOPENG routine.

For example:

CALL FOPENG (20,'a.dat','old','fs',0,' ')

Opens an existing formatted sequential file.

CALL FOPENG (20,'a.dat','new','ud',10,'unk')

Creates a new, unformatted, direct access file with a record length of 10 bytes ; in case

a file a.dat already exists the routine needs either permission to overwrite or a new

filename

CALL FOPENG (20,'a.dat','new','ud',10,'del')

Creates new, unformatted, direct access file with a record length of 10 bytes ; a possibly

existing file a.dat is deleted

Usage: call FOPENG (IUNIT, FILNAM, STATUS, TYPE, IRECL, PRIV)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: FOPENS

Arguments: Meaning Data

type

I and/or

O

IUNIT Unit number used to open file I4 I

FILNAM Name of the file to be opened. Inside FOPENG, FILNAM is

converted to lowercase.

C*(*) I

STATUS Status of the file C*(*) I

68

='old', existing file is opened

='new', new file is created (see PRIV)

='rdo', existing file is opened with write protection ; this only works

on the VAX, on other machines RDO=OLD

TYPE String containing code for FORM keyword (F,U or B) and code for

ACCESS keyword (S or D).

='F', formatted file

='U', unformatted file

='B', binary filetype (Microsoft Fortran only)

='S', sequential access

='D', direct access

C*(*) I

IRECL Record length of direct access files in BYTES (see also machine

dependent parameter IWLEN below) may be dummy value in case

of sequential files

I4 I

PRIV Privilege ; in case status='new' and file exists:

='del', old file is overwritten

='nod', old file saved, program stopped

='unk', in case file exists, one may either overwrite it or give a

new filename (interactive choice)

C*(*) I

Routine: FOPENS

Purpose: Opens a formatted, sequential file (the normal ascii text files) by internally calling

FOPENG. See FOPENG for details pertaining to formatted sequential files. For example:

CALL FOPENS (20,'a.dat','old',' ')

Opens an existing formatted sequential file

CALL FOPENS (20,'a.dat','new','unk')

Creates a new, formatted, sequential file ; in case a file a.dat already exists the routine

asks permission to overwrite.

CALL FOPENS (20,'a.dat','new','del')

Creates new, formatted, sequential file ; a possibly existing file a.dat is deleted

Usage: call FOPENS (IUNIT, FILNAM, STATUS, PRIV)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: FOPENG

Arguments: Meaning Data

type

I and/or

O

IUNIT Unit number used to open file I4 I

FILNAM Name of the file to be opened C*(*) I

STATUS Status of the fileI

='old', existing file is opened

='new', new file is created (see PRIV)

C*(*) I

69

='rdo', existing file is opened with write protection ; this only works

on the VAX, on other machines RDO=OLD

PRIV Privilege, in case status='new' and file exists:

='del', old file is overwritten

='nod', old file saved, program stopped

='unk' in case file exists, one may either overwrite it or give a

new filename (interactive choice)

C*(*) I

Routine: GETUN

Purpose: Gets a free unit number within range IST and IEND (inclusive), an error occurs if a free

unit number cannot be found.

Usage: <integer variable> = GETUN (IST, IEND)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: GETUN2, USEDUN

Arguments: Meaning Data

type

I and/or

O

IST Unit number where search should start I4 I

IEND Idem where search should end I4 I

GETUN Returned free unit number I4 O

Routine: GETUN2

Purpose: Gets a range of NUM free unit number within range IST and IEND (inclusive). An error

occurs If a free unit number cannot be found.

Usage: <integer variable> = GETUN2 (IST, IEND, NUM)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: GETUN, USEDUN

Arguments: Meaning Data

type

I and/or

O

IST Unit number where search should start I4 I

IEND Idem where search should end I4 I

NUM Number of required consecutive free unit numbers I4 I

GETUN2 First of sequence of free unit numbers I4 O

70

Routine: USEDUN

Purpose: Checks a range of unit numbers whether they are in use for file i/o. Checking starts at

the value of IST and ends at the value of IEND (inclusive). If that unit is used, a report

on which file uses which unit is written to the screen. If IST is greater than IEND, the

search goes from high numbers to low numbers.

Usage: call USEDUN (IST, IEND)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: GETUN, GETUN2

Arguments: Meaning Data

type

I and/or

O

IST Unit number where to start search I4 I

IEND Unit number where to end search I4 I

10.6. Character string handling

Routine: ADDINF

Purpose: Adds integer I to existing STRING, using format FORM. Routine does not remove

leading and trailing spaces. Also updates the significant length. For example:

CALL ADDINF (STRING,SIGLEN,25,’I4.4’)

Adds the value 25 with the I4.4 format to STRING, the significant length of STRING is

increased by 4. If the input string is ‘example’, then after the call, the string is

‘example0025’.

Usage: call ADDINF (STRING, SIGLEN, I, FORM)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ADDINT, STR_COPY

Arguments: Meaning Data

type

I and/or

O

STRING String to which concatenation should take place C*(*) I/O

SIGLEN Significant length of STRING (is updated after concatenation) I4 I/O

I Integer to be added I4 I

FORM Format to be used (without brackets) C*(*) I

71

Routine: ADDINT

Purpose: Adds integer I to existing STRING, without leading and trailing spaces. Also updates the

significant length. For example:

CALL ADDINT (STRING,SIGLEN,25)

Adds the value 25 to STRING, the significant length of STRING is increased by 2. If the

input string is ‘example’, then after the call, the string is ‘example25’.

Usage: call ADDINT (STRING, SIGLEN, I)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ADDINF, STR_COPY

Arguments: Meaning Data

type

I and/or

O

STRING String to which concatenation should take place C*(*) I/O

SIGLEN Significant length of STRING I4 I/O

I Integer to be added I4 I

Routine: ADDREA

Purpose: Adds real R to existing STRING, using format FORM. Routine removes leading and

trailing spaces. Also updates the significant length. For example:

CALL ADDREA (STRING,SIGLEN,25.’f3.0’)

Adds the value 25. to STRING using the format f3.0, the significant length of STRING is

increased by 3. If the input string is ‘example’, then after the call, the string is

‘example25.’.

Usage: call ADDREA (STRING, SIGLEN, R, FORM)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ADDREF, STR_COPY

Arguments: Meaning Data

type

I and/or

O

STRING String to which concatenation should take place C*(*) I/O

SIGLEN Significant length of STRING I4 I/O

R Real to be added R4 I

FORM Format to be used (without brackets) C*(*) I

72

Routine: ADDREF

Purpose: Adds real R to existing STRING, using format FORM. Routine does not remove leading

and trailing spaces. Also updates the significant length. For example (a ‘-‘ signifies a

space):

CALL ADDREF (STRING,SIGLEN,25.’f8.0’)

Adds the value 25. to STRING using the format f3.0, the significant length of STRING is

increased by 8. If the input string is ‘example’, then after the call, the string is:

‘example-----25.’.

Usage: call ADDREF (STRING, SIGLEN, R, FORM)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ADDREA, STR_COPY

Arguments: Meaning Data

type

I and/or

O

STRING String to which concatenation should take place C*(*) I/O

SIGLEN Significant length of STRING I4 I/O

R Real to be added R4 I

FORM Format to be used (without brackets) C*(*) I

Routine: ADDSTF

Purpose: Adds string TMP to existing STRING, WITH leading and trailing spaces. Also updates the

significant length. For example (a ‘-‘ signifies a space):

CALL ADDSTF (STRING,SIGLEN,’---example---‘)

Adds the string ‘---example---‘ to STRING, the significant length of STRING is increased

by 13. If the input string is ‘example’, then after the call, the string is:

‘example---example---’.

Usage: call ADDSTF (STRING, SIGLEN, TMP)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ADDSTR, STR_COPY

Arguments: Meaning Data

type

I and/or

O

STRING String to which concatenation should take place C*(*) I/O

SIGLEN Significant length of STRING I4 I/O

TMP String to be added C*(*) I

73

Routine: ADDSTR

Purpose: Adds string TMP to existing STRING, without leading and trailing spaces. Also updates

the significant length. For example (a ‘-‘ signifies a space):

CALL ADDSTR (STRING,SIGLEN,’---example---‘)

Adds the string ‘example‘ to STRING, the significant length of STRING is increased by 7.

If the input string is ‘example’, then after the call, the string is:

‘exampleexample’.

Usage: call ADDSTR (STRING, SIGLEN, TMP)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ADDSTF, STR_COPY

Arguments: Meaning Data

type

I and/or

O

STRING String to which concatenation should take place C*(*) I/O

SIGLEN Significant length of STRING I4 I/O

TMP String to be added C*(*) I

Routine: ILEN

Purpose: Determines the significant length of a string. A zero is returned if the string is empty.

As this version of TTUTIL is the last fully FORTRAN-77 compatible library, you are

advised to change calls to ILEN into calls to the Fortran 90 intrinsic function LEN_TRIM

as soon as you have migrated to the Fortran 90 environment.

Usage: <integer variable> = ILEN (STRING)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ISTART

Arguments: Meaning Data

type

I and/or

O

STRING Input string C*(*) I

ILEN Returned significant length I4 O

74

Routine: ISTART

Purpose: Determines the first significant character of a string. If the string contains no significant

characters, a zero is returned. The functionality of this routine is similar to ILEN, except

that now the first non-space character is returned instead of the last.

Usage: <integer variable> = ISTART (STRING)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ILEN

Arguments: Meaning Data

type

I and/or

O

STRING Input string C*(*) I

ISTART Returned position of first non-space character I4 I

Routine: LOWERC

Purpose: Converts a string to lowercase characters

Usage: call LOWERC (STRING)

Author(s): Daniël van Kraalingen , Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: UPPERC

Arguments: Meaning Data

type

I and/or

O

STRING Character string C*(*) I/O

Routine: UPPERC

Purpose: Converts a string to uppercase characters

Usage: call UPPERC (STRING)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: LOWERC

Arguments: Meaning Data

type

I and/or

O

STRING character string C*(*) I/O

75

Routine: REMOVE

Purpose: Replaces all unwanted characters in a string with a <space>. For example, if "e" is

removed from "bicentennial", the result is "bic nt nnial".

Usage: call REMOVE (STRING, CHR)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

STRING String that is used C*(*) I/O

CHR Character to be removed C*1 I

Routine: STR_COPY

Purpose: Copies an input string to an output string. The added value is that the routine checks that

the significant part of the input string fits on the output string.

Usage: call STR_COPY (SOURCE_S, TARGET_S, OK)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: ADD* routines

Arguments: Meaning Data

type

I and/or

O

SOURCE_S Input string C*(*) I

TARGET_S Output string C*(*) O

OK Flag whether input string fits on output string L4 O

Routine: WORDS

Purpose: Looks for start and end positions of words on a string. Valid separators can be supplied

by the user. A sequence of separators is treated as one separator. For example if the

string is:

‘a,b, c’ and commas and spaces are used as separator, WORDS will find the first word

at position 1 to 1, the second word at position 3 to 3 and the third word at position 9.

Usage: call WORDS (RECORD, ILW, SEPARS, IWBEG, IWEND, IFND)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: DECREC

76

Arguments: Meaning Data

type

I and/or

O

RECORD Character string where words are to be located C*(*) I

ILW Maximum number of words which can be found (=declared length of

IWBEG and IWEND arrays)

I4 I

SEPARS String containing separator characters C*(*) I

IWBEG Integer array of dimension ILW containing start positions on return I4 O

IWEND Integer array of dimension ILW containing end positions on return I4 O

IFND Integer containing the number of words found I4 O

Routine: RCHRSRC

Purpose: Takes a character backward from a string and checks whether it matches with one of the

characters supplied by the user. If a match is not found, the next character from the

input string is compared. For example if the string is ‘myexample’, and the characters to

find are ‘ma’, then a match is found at the m on position 6.

Usage: <integer variable> = RCHRSRC (CHARS, STRING, POSBEG,POSEND)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: IFINDC, SFINDG

Arguments: Meaning Data

type

I and/or

O

CHARS String of characters with which match may occur (the string ‘ma’ in

the above example)

C*(*) I

STRING String where match is looked for in backward position (the string

‘myexample’ in the above example)

C*(*) I

POSBEG Position where search should stop (inclusive) I4 I

POSEND Position where search should start (inclusive) I4 I

RCHRSRC Returned position of match I4 O

10.7. Decoding of character strings to values

Routine: DECCHK

Purpose: Checks if a string is a number (a number here is defined as either a real or integer value)

Usage: <logical variable> = DECCHK (STRING)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 2-September-1999

See also: DECINT, DECREA

77

Arguments: Meaning Data

type

I and/or

O

STRING Input string, NO trailing or leading blanks ! C*(*) I

DECCHK Returned value is .true. if the string is a real or integer number,

otherwise a .false. is returned

L4 O

Routine: DECDOU

Purpose: Decodes a number from a character string into a double precision variable

Usage: call DECDOU (IWAR, STRING, VALUE)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 13-March-2002

See also: DECCHK, DECINT, DECREA

Arguments: Meaning Data

type

I and/or

O

IWAR In case of error IWAR = 1, otherwise IWAR = 0, can be used to

check the success of the decoding

I4 O

STRING Input string, NO trailing or leading blanks are allowed C*(*) I

VALUE Double precision value read from string, if decoding failed (when

IWAR is returned as 1), a zero for VALUE is returned.

R8 O

Routine: DECINT

Purpose: Decodes an integer number from a character string into an integer variable

Usage: call DECINT (IWAR, STRING, IVALUE)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: DECCHK, DECREA, DECDOU

Arguments: Meaning Data

type

I and/or

O

IWAR In case of error IWAR = 1, otherwise IWAR = 0, can be used to

check the success of the decoding

I4 O

STRING Input string, NO trailing or leading blanks are allowed C*(*) I

IVALUE Integer value read from string, if decoding failed (when IWAR is

returned as 1), a zero for IVALUE is returned

I4 O

78

Routine: DECREA

Purpose: Decodes a number from a character string into a single precision real value

Usage: call DECREA (IWAR, STRING, VALUE)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: DECCHK, DECINT, DECDOU

Arguments: Meaning Data

type

I and/or

O

IWAR In case of error IWAR = 1, otherwise IWAR = 0, can be used to

check the success of the decoding

I4 O

STRING Input string, NO trailing or leading blanks are allowed C*(*) I

VALUE Real value read from string, if decoding failed (when IWAR is

returned as 1), a zero for VALUE is returned.

R4 O

Routine: DECREC

Purpose: Locates and decodes from the character string RECORD at most ILX real numbers.

Numbers are separated by blanks(s) and/or comma(s).

Usage: call DECREC (RECORD, ILX, X)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: WORDS, DECREA, DECINT, DECCHK

Arguments: Meaning Data

type

I and/or

O

RECORD Character string C*(*) I

ILX Number of REAL numbers to be decoded I4 I

X Array of dimension ILX containing the decoded results R4 O

79

10.8. Messages and Errors

Routine: FATALERR

Purpose: Writes an error message. If screen output is enabled it holds the screen until the

<ENTER> key is pressed. Then execution is terminated.

Usage: call FATALERR (ROUTINE, MESSAG)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: MESSWRT, WARNING, MESSINI

Arguments: Meaning Data

type

I and/or

O

ROUTINE String containing the routine name C*(*) I

MESSAG String containing the message C*(*) O

Routine: MESSINI

Purpose: Sets screen and logfile use for all TTUTIL routines. After MESSINI, the RD* routines

neglect the logfile units in RDINIT and RDSETS calls. MESSINI can be reset to default

behaviour by setting TOLOG=.true. and UNLOG=0.

Usage: call MESSINI (TOSCR, TOLOG, UNLOG)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 18-April-2002

See also: MESSINQ

Arguments: Meaning Data

type

I and/or

O

TOSCR Flag controlling message display on screen L4 I

TOLOG Flag controlling message display on logfile L4 I

UNLOG Unit number of open logfile I4 I

80

Routine: MESSINQ

Purpose: Inquiry for screen and logfile settings

Usage: call MESSINI (TOSCR, TOLOG, UNLOG)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 18-April-2002

See also: MESSINI

Arguments: Meaning Data

type

I and/or

O

TOSCR Flag controlling message display on screen L4 O

TOLOG Flag controlling message display on logfile L4 O

UNLOG Unit number of open logfile I4 O

Routine: MESSWRT

Purpose: Writes a message to screen and/or logfile. Execution is not terminated.

Usage: call MESSWRT (ROUTINE, MESSAG)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 18-April-2002

See also: FATALERR, WARNING, MESSINI

Arguments: Meaning Data

type

I and/or

O

ROUTINE String containing the routine name C*(*) I

MESSAG String containing the message C*(*) O

Routine: WARNING

Purpose: Writes a warning message to screen and/or logfile. Execution is not terminated.

Usage: call WARNING (ROUTINE, MESSAG)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: FATALERR, MESSWRT, MESSINI

Arguments: Meaning Data

type

I and/or

O

ROUTINE String containing the routine name C*(*) I

MESSAG String containing the message C*(*) I

81

Routine: OPENLOGF

Purpose: Opens a logfile, writes date/time, program name, version and author in it and (optional) a

TTUTIL version message. Then MESSINI is called and the generated logfile unit is

available via MESSINQ.

Usage: call OPENLOGF (TOSCR, NAME, PROGNAM, VRSSTR, AUTHOR, TTNOTE)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 7-May-2002

See also: MESSINI, MESSINQ

Arguments: Meaning Data

type

I and/or

O

TOSCR Flag controlling message display on screen L4 I

NAME Name of logfile, extension .log is added if absent C*(*) I

PROGNAM Name of calling program C*(*) I

VRSSTR Version string C*(*) I

AUTHOR Author(s) C*(*) I

TTNOTE Flag for TTUTIL version message L4 I

10.9. Version routines

Routine: TTUVER

Purpose: Verifies that the minimal TTUTIL version required by the calling program matches the

linked version of the TTUTIL library. Also returns the current TTUTIL version.

Usage: call TTUVER (MIN_V, CUR_V)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: VER4_12

Arguments: Meaning Data

type

I and/or

O

MIN_V Minimum version of TTUTIL required for the calling program R4 I

CUR_V Current version of TTUTIL R4 O

82

Routine: VER4_13

Purpose: This routine is a dummy routine meant to be able to see in a TTUTIL library file what the

version of that library is.

Usage:

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: TTUVER

Arguments: Meaning Data

type

I and/or

O

none

10.10. Numeric functions

Routine: FCNSW

Purpose: Input switch depending on sign of X1 ; function is equivalent to the CSMP-FCNSW. (See

also Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = FCNSW (X1, X2, X3, X4)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: INSW

Arguments: Meaning Data

type

I and/or

O

X1 Variable upon which the test is done R4 I

X2 Value of FCNSW in case X1 < 0 R4 I

X3 Value of FCNSW in case X1 = 0 R4 I

X4 Value of FCNSW in case X1 > 0 R4 I

FCNSW Returned value R4 O

83

Routine: INSW

Purpose: Input switch depending on sign of X1 ; function is equivalent to the CSMP-INSW. (See

also Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = INSW (X1, X2, X3)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: FCNSW

Arguments: Meaning Data

type

I and/or

O

X1 Identifier upon which the test is done R4 I

X2 Value of INSW in case X1 < 0 R4 I

X3 Value of INSW in case X1 >= 0 R4 I

INSW Returned value R4 O

Routine: INTGRL

Purpose: Function value = STATE + RATE * DELT. (See also Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = INTGRL (STATE, RATE, DELT)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

STATE Old state R4 I

RATE Rate of change per unit time R4 I

DELT Time step R4 I

INTGRL Function name, new state R4 O

Routine: LIMIT

Purpose: Returns value of X limited within the interval [MIN,MAX]. (See also Rappoldt and van

Kraalingen, 1996).

Usage: <real variable> = LIMIT (MIN, MAX, X)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: INSW, FCNSW

84

Arguments: Meaning Data

type

I and/or

O

MIN Interval lower boundary R4 I

MAX Interval upper boundary R4 I

X Variable that should be limited R4 I

LIMIT Limited value R4 O

Routine: LINT

Purpose: This function is a linear interpolation function. The function also extrapolates outside the

defined region in case X is below or above the region defined by TABLE. Extrapolation,

however, results in a warning to the screen. The preferred routine for linear interpolation,

however, is LINT2 which gives better error and warning texts. (See also Rappoldt and van

Kraalingen, 1996).

Usage: <real variable> = LINT (TABLE, ILTAB, X)

Author(s): Daniël van Kraalingen , Kees Rappoldt,

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: LINT2

Arguments: Meaning Data

type

I and/or

O

TABLE A one-dimensional array of dimension ILTAB with paired data:

x1,y1,x2,y2, etc.

R4 I

ILTAB Number of elements in the array TABLE I4 I

X The value at which interpolation should take place R4 I

LINT Function name, result of the interpolation R4 O

Routine: LINT2

Purpose: This function is a linear interpolation function. The function also extrapolates outside the

defined region in case X is below or above the region defined by TABLE. Extrapolation,

however, results in a warning to the screen. LINT2 is the preferred routine for linear

interpolation. (See also Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = LINT2 (TABNAM, TABLE, ILTAB, X)

Author(s): Daniël van Kraalingen , Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: LINT

Arguments: Meaning Data

type

I and/or

O

TABNAM Table name C*(*) I

TABLE A one-dimensional array of dimension ILTAB with paired data: R4 I

85

x1,y1,x2,y2, etc.

ILTAB Number of elements in the array TABLE I4 I

X The value at which interpolation should take place R4 I

LINT2 Function name, result of the interpolation R4 O

Routine: MOVAVR

Purpose: Calculates a moving average of the last IP points, MOVAVR can keep simultaneous

moving averages of 10 different variables, distinguished by their names. For each

variable, a maximum moving average number of 100 points can be handled.

Usage: call MOVAVR (ITASK, NAME, IP, IN, OUT)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

ITASK Task to be carried out:

=1, initialize

=2, calculate moving average

I4 I

NAME Variable name for which moving average should be calculated C*(*) I

IP Number of previous values (including the current value) on which

moving average should be calculated

I4 I

IN New value R4 I

OUT Moving average for NAME (if MOVAVR has not yet stored IP

values for NAME, then the moving average is calculated from the

fewer number of points)

R4 O

Routine: NOTNUL

Purpose: This function can be used to avoid divide by zero errors in divisions. The function result

is defined as: NOTNUL = X, when X <> 0 NOTNUL = 1, when X = 0. (See also Rappoldt

and van Kraalingen, 1996).

Usage: <real variable> = NOTNUL (X)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: LIMIT, INSW, FCNSW

Arguments: Meaning Data

type

I and/or

O

X Input argument R4 I

NOTNUL Function result R4 O

86

Routine: REAAND

Purpose: This function emulates the CSMP function AND. It is similar to a logical .AND. except

that arguments and results are REAL instead of LOGICAL The definition of the function

is: REAAND = 1, X1 > 0 and X2 > 0 REAAND = 0, else. (See also Rappoldt and van

Kraalingen, 1996).

Usage: <real variable> = REAAND (X1, X2)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: REANOR

Arguments: Meaning Data

type

I and/or

O

X1 first argument R4 I

X2 second argument R4 I

REAAND Function result R4 O

Routine: REANOR

Purpose: This function emulates the CSMP function NOR. It is similar to the logical expression

.NOT.(logical.OR.logical) except that arguments and results are REAL instead of

LOGICAL The definition of the function is: REANOR = 1 when X1 <=0 and X2 <= 0

REANOR = 0 otherwise. (See also Rappoldt and van Kraalingen, 1996).

Usage: <real variable> = REANOR (X1, X2)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: REAAND

Arguments: Meaning Data

type

I and/or

O

X1, first argument R4 I

X2 second argument R4 I

REANOR Function result R4 O

87

10.11. Date/time

Routine: DTARDP

Purpose: Converts DATEA, FSEC representation of a Date/Time to the double precision

representation. This routine is the opposite from DTDPAR.

Usage: call DTARDP (DATEA, FSEC, DPDTTM)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: DTDPAR, DTFSEDP

Arguments: Meaning Data

type

I and/or

O

DATEA Integer array of six elements containing year, month, day, hour,

minute and seconds

I4 I

FSEC Fractional seconds R4 I

DPDTTM Converted date/time to a double precision date/time (represented

as the number of days since 1/1/1900)

R8 O

Routine: DTDPAR

Purpose: Converts the double precision representation of a Date/Time to DATEA, FSEC

representation. This routine is the opposite from DTARDP.

Usage: call DTDPAR (DPDTTM, DATEA, FSEC)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: DTARDP, DTFSEDP

Arguments: Meaning Data

type

I and/or

O

DPDTTM Date/time as a double precision date/time (represented as the

number of days since 1/1/1900)

R8 I

DATEA Integer array of six elements containing year, month, day, hour,

minute and seconds

I4 O

FSEC Fractional seconds R4 O

88

Routine: DTDPST

Purpose: Write the double precision representation of date/time to a string using a format

specification

Usage: call DTDPST (FORM, DPDTTM, STRNG)

Author(s): Daniël van Kraalingen

Version: 1.1, TTUTIL version 4.13

Date: 6-April-1998

See also:

Arguments: Meaning Data

type

I and/or

O

FORM Format to use. A string containing one or more of the following

specifiers with separator characters:

YEAR writes the year as a four digit year

MONTH writes the month as a two digit number

MONTHLT writes the month with the full name

MONTHST writes the month with a three character name

DAY writes a two digit day number

HOUR writes a two digit hour

MINUTE writes a two digit minute

SECONDS writes a two digit seconds

FSECONDS writes the fractional seconds as a six digit number,

must appear behind a seconds specifier

For example, if the format

‘YEAR-MONTHST-DAY HOUR:MINUTE:SECONDS.FSECONDS’

is used on noon Sept 27, 1998, STRNG will be:

‘1998-Sep-27 12:00:00.000000’

C*(*) I

DPDTTM Date/time as a double precision date/time (represented as the

number of days since 1/1/1900)

R8 I

STRNG Output string with formatted date/time C*(*) O

Routine: DTFSECMP

Purpose: Compares two dates in FSE format (FSE format is an integer for year and another

integer for the day of year)

Usage: <integer variable> = DTFSECMP (IYEAR1, IDOY1, IYEAR2, IDOY2)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

IYEAR1 Year of first date I4 I

89

IDOY1 Day of year of first date I4 I

IYEAR2 Year of second date I4 I

IDOY2 Day of year of second date I4 I

DTFSECMP =-1, first date is earlier than second date

=0, first date is equal to second date

=1, first date is later than second date

I4 O

Routine: DTFSEDP

Purpose: Converts date/time in FSE format to the double precision representation

Usage: call DTFSEDP (IYEAR, IDOY, DOY, DPDTTM)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: DTDPAR, DTARDP

Arguments: Meaning Data

type

I and/or

O

IYEAR Year to convert I4 I

IDOY Integer day number to convert I4 I

DOY Real day number to convert R4 I

DPDTTM Converted date/time as double precision variable R8 O

Routine: DTLEAP

Purpose: Determines whether YEAR is a leap year or not, taking into account the official leap year

logic

Usage: <logical variable> = DTLEAP (YEAR)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

YEAR Year to use I4 I

DTLEAP Flag whether YEAR is a leap year L4 O

90

Routine: DTNOW

Purpose: Returns the systems date and time as an integer array of six elements containing year,

month, day, hour, minute and seconds

Usage: call DTNOW (DATEA)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: DTARDP

Arguments: Meaning Data

type

I and/or

O

DATEA Array of length 6 containing year, month, day, hour, minute and

seconds

I4 O

10.12. ‘Raw’ file I/O

Routine: GETREC

Purpose: Reads a record from an open file skipping comment lines. Comment lines have an

asterisk (*) in their first or second (!!) column (with a space in the first).

Usage: call GETREC (IUNIT, RECORD, EOF)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RECREAD

Arguments: Meaning Data

type

I and/or

O

IUNIT Unit of opened file used for reading I4 I

RECORD Returned record C*(*) O

EOF Flag whether the end of the file is encountered L4 O

91

Routine: RECREAD

Purpose: Returns a record from an input file opened with RECREAD_INIT. The advantage of this

routine over the normal method of reading with a Fortran READ statement is that

RECREAD is much faster when you are working with the Microsoft 5.1 or 1.0 compiler or

the Digital Visual Fortran 5.0 compiler (due to a special mode used in the OPEN

statement). Also with these compilers, RECREAD is able to determine whether the

supplied string was long enough to hold every character of the input record. If not the

IWAR variable is set to 1. With other compilers, RECREAD can also be used but without

these advantages.

Usage: call RECREAD (STBUF, RECLEN, STBLEN, EOF, IWAR)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: GETREC

Arguments: Meaning Data

type

I and/or

O

STBUF String supplied by the user to which the input record is copied C*(*) O

RECLEN Declared length of STBUF I4 I

STBLEN Significant length of string STBUF I4 O

EOF End_of_file flag, on EOF, this routines closes the file L4 I

IWAR Set to 1 if input record overflows STBUF, otherwise IWAR is zero I4 O

Routine: RECREAD_INIT

Purpose: Initializes sequential input from a file for subsequent reading with RECREAD. Note that

input sections starting with RECREAD_INIT cannot be nested (see Section 9.1).

Usage: call RECREAD_INIT (UNIT, INPUT_FILE)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

UNIT Unit to use for subsequent reading with RECREAD I4 I

INPUT_FILE File to be used by RECREAD C*(*) I

92

Routine: RECREAD_TERM

Purpose: Closes the open file in case it is not closed by the RECREAD routine

Usage: call RECREAD_TERM

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

none

10.13. List search and sorting

Routine: IFINDC

Purpose: Finds position of a string in an array with strings ; when the string does not occur in the

list a zero value is returned. Declared length of string array and string to search should

be the same. Searching can take place from the beginning to end or the reverse.

Usage: <integer variable> = IFINDC (NAMLIS, ILDEC, IST, IEND, NAME)

Author(s): Kees Rappoldt, Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: SFINDG, IFINDI

Arguments: Meaning Data

type

I and/or

O

NAMLIS Character string array of dimension ILDEC, the "list" C*(*) I

ILDEC Declared length of array NAMLIS I4 I

IST Array element where search should start I4 I

IEND Array element where search should end I4 I

NAME Name to be found in the list C*(*) I

IFINDC Pointer to matching array element I4 O

93

Routine: IFINDI

Purpose: Similar to IFINDC but now searching for an integer. When the integer is not in the list, a

zero value is returned.

Usage: <integer variable> = IFINDI (ILIS, ILDEC, IST, IEND, IINP)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: IFINDC, SFINDG

Arguments: Meaning Data

type

I and/or

O

ILIS Integer array of dimension ILDEC, the "list" I4 I

ILDEC Declared length of array ILIS I4 I

IST Array element where search should start I4 I

IEND Actual size of the list I4 I

IINP Integer to be found in the list I4 I

IFINDI Pointer to matching array element I4 O

Routine: SFINDG

Purpose: This is a more powerful version of IFINDC. It finds the position of a text in an array of

texts. Whereas IFINDC looks for an exact match including leading and trailing spaces,

SFINDG has several ways to find a match, nl. an exact match, a match at the beginning,

a match at the end, and a match anywhere in the string. Also SFINDG never takes into

account trailing spaces.

Usage: call SFINDG (NAMLIS, ILDEC, IST, IEND, NAME, ISTYPE, IFINDG, IMATCH)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: IFINDC, IFINDI

Arguments: Meaning Data

type

I and/or

O

NAMLIS Character string array, the “list” C*(*) I

ILDEC Declared length of NAMLIS I4 I

IST Array element where search should start I4 I

IEND Array element where search should end I4 I

NAME Character string to be found in NAMLIS C*(*) I

ISTYPE Type of search to be carried out

=1, NAME should match NAMLIS exactly

=2, NAME should match beginning of NAMLIS

=3, NAME should match end of NAMLIS

=4, NAME can match at any character position

I4 I

IFINDG Element number where match was found I4 O

94

IMATCH Character position of NAMLIS(IFINDG) where match was found I4 O

Routine: SORTCH

Purpose: Returns alphabetical order of an array of character strings. The order is returned as an

integer index array (the character string array is left unchanged). Adapted from routine

INDEXX of Numerical Recipes. The routine is left unchanged as much as possible.

Usage: call SORTCH (N, ARRIN, INDX, Q)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: SORTIN

Arguments: Meaning Data

type

I and/or

O

N Array size of ARRIN and INDX I4 I

ARRIN Character string array of dimension N C*(*) I

INDX Integer array of dimension N containing the sorted order I4 O

Q A character variable with the same length as the elements of

ARRIN. This is used internally to SORTCH as a help variable, but

should be declared in the calling program.

C*(*) I

Routine: SORTIN

Purpose: Returns alphabetical order of an array of integers. The order is returned as an integer

index array (the integer array is left unchanged). Adapted from routine INDEXX of

Numerical Recipes. Routine is left unchanged as much as possible.

Usage: call SORTIN (N, ARRIN, INDX)

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: SORTCH

Arguments: Meaning Data

type

I and/or

O

N Array size of ARRIN and INDX I4 I

ARRIN Character string array of dimension N C*(*) I

INDX Integer array of dimension N containing order I4 O

95

10.14. Random number generation

Routine: IUNIFL

Purpose: Generates integer uniformly distributed numbers between a lower and an upper bound

(inclusive). See description of UNIFL for a more detailed discussion.

Usage: <integer variable> = IUNIFL (LOWB, UPPB)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: UNIFL

Arguments: Meaning Data

type

I and/or

O

LOWB Lower bound (inclusive) I4 I

UPPB Upper bound (inclusive) I4 I

IUNIFL Random integer I4

Routine: UNIFL

Purpose: High quality pseudo random number generator. This pseudo random generator is fully

based on FUNCTION UNIFL in the second edition (1987) of Bratley et al. (see below). A

logical INIT has been added to the original program in order to include seeds in the

program (implicit initialization). This generator is of the so called combined type. It does

not behave pathologically with the Box-Muller method for the generation of normal

variates, as do the commonly used linear congruential generators (see also comments in

FUNCTION BOXMUL). The algorithm is:

X(i+1) = 40014 * X(i) mod (2147483563)

Y(i+1) = 40692 * Y(i) mod (2147483399)

Z(i+1) = (X(i+1)+Y(i+1)) mod (2147483563)

The random number returned is constructed dividing Z by its range. The period of the

generator is about 2.30584E+18. The algorithm originates from L'Ecuyer (1986). In

Bratley et al. (page 332) more information can be found on seeds and periods of X and

Y. References:

Bratley, P., B.L. Fox, L.E. Schrage. 1983. A guide to simulation Springer-Verlag New

York Inc. 397 pp.

L'Ecuyer,P. (1986). Efficient and portable combined pseudo-random number generators.

Commun. ACM.

Usage: <real variable> = UNIFL()

Author(s): Kees Rappoldt

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: IUNIFL

96

Arguments: Meaning Data

type

I and/or

O

UNIFL Pseudo-random uniformly distributed variate R4 O

10.15. Miscellaneous

Routine: AMBUSY

Purpose: Stores and returns message numbers belonging to routine names. Internal use is made

in the TTUTIL routines to find out whether or not other routines have been called. Also the

selected set number from the RDFROM routine is made available to OUTDAT.

Usage: call AMBUSY (ITASK, ROUTINE, ICODE)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also: RDFROM, OUTDAT

Arguments: Meaning Data

type

I and/or

O

ITASK Function control

=1, store routine name and code

=2, get code belonging to routine name

I4 I

ROUTINE String containing the routine name C*(*) I

ICODE Code I4 I/O

Routine: CHKTSK

Purpose: The function of this routine is to check the new task and previous task of simulating

subroutines. This routine is normally called from an FSE type of model. (See Van

Kraalingen, 1995).

Usage: call CHKTSK (ROUTINE, IULOG, ITOLD, ITASK)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

ROUTINE Name of routine from which CHKTSK is called C*(*) I

IULOG Unit for log file where to write errors to I4 I

ITOLD Value of previous task I4 I

ITASK Value of new task I4 I

97

Routine: TIMER2

Purpose: This subroutine updates TIME and related variables each time it is called with ITASK=2. It

will set TERMNL to .TRUE. if FINTIM is reached. OUTPUT is flagged when TIME is a

multiple of PRDEL. When PRDEL=0, no output is flagged ! When IYEAR < 1500, IYEAR

will not be increased because in that case climate data are used. The routine should be

initialized first by a call with ITASK=1. The first six arguments will then be made local.

Leap years are handled correctly. This routine is normally called from the FSE driver, and

not directly by the user. (See Van Kraalingen, 1995).

Usage: call TIMER2 (ITASK, STTIME, DELT, PRDEL , FINTIM, IYEAR,

TIME, DOY, IDOY, TERMNL, OUTPUT)

Author(s): Daniël van Kraalingen

Version: 1.0, TTUTIL version 4.13

Date: 30-September-1997

See also:

Arguments: Meaning Data

type

I and/or

O

ITASK Task that the routine should carry out:

=1, Initialize, store variable for processing with ITASK=2

=2, Increase TIME by DELT, update other time variables

I4 I

STTIME Start day of simulation (1 <= STTIME <= 365, 366 in leap years,

leap years are not flagged when IYEAR < 1500)

R4 I

DELT Time step of simulation (multiple of 1 or 1/DELT = integer e.g.

0.25, 1/3, 0.5, 1, 2, 3)

R4 I

PRDEL Time between successive outputs (must be zero, equal to DELT or

multiple of DELT)

R4 I

FINTIM Finish time of simulation (counted from start of simulation !) R4 I

IYEAR Start year with ITASK=1 and current year with ITASK=2, not

updated when IYEAR < 1500

I4 I/O

TIME Time from start of simulation (starts at value of STTIME) R4 O

DOY Day number within YEAR (REAL version) R4 O

IDOY Day number within YEAR (INTEGER version) I4 O

TERMNL Flag that indicates if FINTIM has been reached L4 O

OUTPUT Flag that indicates if past TIME is a multiple of PRDEL L4 O

10.16. Internal routines

Not listed, see Section 11.3 for a list of names.

99

11. Reserved symbol names

11.1. General

It is advisable, to never give your own subroutines, functions, COMMON blocks, BLOCK DATA
sections or main programs a name that also occurs within the TTUTIL library, unless you really
understand the scope and workings of these names. Relevant names in TTUTIL in this respect
are the routine names, the internal routine names, COMMON block name and names of
BLOCK DATA sections. All names except the routine names (which can be found in Section
10) are listed in this Section.

11.2. Reserved common block names

COMMON block names in TTUTIL (alphabetically):
BUF_READ_COM1

BUF_READ_COM2

MESSINF

RDFIL1

RDFIL2

RDREC1

RDREC2

RDSTA

RDTBL1

RDTBL2

RDTOK1

RDTOK2

TTUDD1

TTUDD2

TTURR1

TTURR2

WR_SYS_1

WR_SYS_2

11.3. Names of internal TTUTIL routines

DTSYS

ENTHLP

PARSWORD

RDDATA

RDERR

RDERRI

RDINDX

RDLEX

RDSCTB

100

RDTMP1

RDTMP2

SWPI4

11.4. Names of BLOCK DATA sections

RECREAD_DATA
WRINIT_DATA

101

12. Capacity settings of TTUTIL read routines

The following limits exist in the TTUTIL read routines:

Quantity Maximum

General

Significant record length on TTUTIL format data file+1 (for end of line processing) 1024

Maximum length of variable names (in characters) 31

Maximum number of columns in a table 40

Data files

Maximum number of variable names in a data file 400

Maximum number of values per variable name no limit

Rerun files

Maximum number of variable names in each set of a rerun file 40

Maximum number of values per variable name no limit

Maximum number of sets in a rerun file no limit

102

13. Removed routines

Because of little use of routines, or because of outdated functionality, we have decided to
remove several routines from the current version of the TTUTIL library, relative to the one
described in Rappold & van Kraalingen (1990). However, the source files are still available for
these routines.

The removed routines are (alphabetically):

103

Routine name Brief description of functionality Why removed

AFINVS Determines the inverse of a one-

dimensional array with (x,y) values,

a so called AFGEN/LINT table.

Very limited use.

BOXMUL Randomly distributed numbers

following Standard Normal

probability distribution.

Dedicated, public domain libraries

available.

CLS Clears the screen of MS-DOS

based systems (when ANSI.SYS

is loaded).

Very limited use of MS-DOS, and

very limited used of screen

functions in MS-DOS

COPFIL Copies a text file and appends it to

another file.

Replaced by COPFIL2 with more

functionality.

ERROR Displays an error message on the

screen and stops execution of the

program.

Name conflicted with C-library,

routine has been renamed to

FATALERR.

EUDRIV Euler integrator. Moved to DRIVERS library.

FOPEN Opens formatted sequential

access files.

Name conflicted with C-library,

routine has been renamed to

FOPENS.

GAMMA Randomly distributed numbers

following Gamma distribution.

Dedicated, public domain libraries

available.

GETCH Reads a text file character by

character.

Very limited use.

MOFILP Moves the file pointer across

blocks of text that start with ‘*’.

Routine is redundant with new RD

routines for reading data from text

files.

OUTARR Outputs an array ot OUTDAT

system.

Replace by OUTAR2 with more

functionality.

PLTFUN Creates a TTPLOT text file from a

one-dimensional array with (x,y)

values, a so called AFGEN/LINT

table.

Very limited use.

PLTHIS Creates a TTPLOT text file with a

histogram of the entered data.

Very limited use.

POS Positions the cursor of MS-DOS

based systems at a particular (x,y)

location of the screen. (Only when

ANSI.SYS is loaded).

Very limited use of MS-DOS, and

very limited used of screen

functions in MS-DOS

RK4A Part of Runge-Kutta integrator. Moved to DRIVERS library.

RKDRIV Part of Runge-Kutta integrator. Moved to DRIVERS library.

RKQCA Part of Runge-Kutta integrator. Moved to DRIVERS library.

STRIP Strips unwanted characters (CHR)

from a character string.

Violates the FORTRAN-77 rule

that string variables cannot appear

on both sides of an assignment.

Possibly, this function is

reintroduced into the first version

of the TTUTIL library for Fortran-90

104

compilers.

TIMER Clock for simulation models Required change in time

calculation, has been

reprogrammed as TIMER2.

105

14. References

Kraalingen, D.W.G. van, 1995.
The FSE system for crop simulation, version 2.1. Quantitative Approaches in Systems
Analysis No. 1. DLO Research Institute for Agrobiology and Soil fertility; The C.T.de Wit
graduate school for Production Ecology. Wageningen. The Netherlands. 58 pp.
(available on request).

Rappoldt, C. & D.W.G. van Kraalingen, 1990.
FORTRAN utility library TTUTIL. Simulation Report CABO-TT no. 20. Centre for
Agrobiological Research and Dept. of Theoretical Production Ecology, Wageningen,
The Netherlands, 54 pp. (available on request).

Rappoldt, C., and D.W.G. van Kraalingen, 1996.
The Fortran Simulation Translator, FST version 2.0. Quantitative Approaches in Systems
Analysis No. 5. DLO Research Institute for Agrobiology and Soil fertility; The C.T.de Wit
graduate school for Production Ecology. Wageningen. The Netherlands. 178 pp.
(available on request).

	Table of Contents
	1. Introduction
	2. General description
	2.1. Product perspective
	2.2. Product identification
	2.3. Supported platforms
	2.4. Availability
	2.5. Hard and software limitations

	3. The structure of the TTUTIL library
	4. General concept of RD routines
	4.1. A simple example
	4.2. Reading tables and arrays with fixed lengths
	4.3. Using missing values
	4.4. Getting information about a variable
	4.5. Range checks on input
	4.6. Making reruns with the RD routines
	4.7. Note when using reruns and the RDINIT routine
	4.8. Summary of available interface calls

	5. Reference manual of data file syntax
	5.1. Variable name syntax
	5.2. Definitions of data types
	5.3. Defining arrays
	5.4. Comment lines
	5.5. Separation of specifications

	6. The ENT routines
	7. The OUT routines
	8. Messages and Error handling
	8.1. A logfile with version and author in a single call
	8.2. RD* routines and logfile use

	9. Known problems
	9.1. Illegal nesting of input sections
	9.2. Closing RD* input files
	9.3. Compiler specific problems

	10. Reference manual of interface calls
	10.1. Reading of TTUTIL format datafiles
	10.2. Writing of TTUTIL format datafiles
	10.3. Interactive input
	10.4. Output to file
	10.5. File and unit handling
	10.6. Character string handling
	10.7. Decoding of character strings to values
	10.8. Messages and Errors
	10.9. Version routines
	10.10. Numeric functions
	10.11. Date/time
	10.12. ‘Raw’ file I/O
	10.13. List search and sorting
	10.14. Random number generation
	10.15. Miscellaneous
	10.16. Internal routines

	11. Reserved symbol names
	11.1. General
	11.2. Reserved common block names
	11.3. Names of internal TTUTIL routines
	11.4. Names of BLOCK DATA sections

	12. Capacity settings of TTUTIL read routines
	13. Removed routines
	14. References

